Smooth universal Taylor Series

被引:14
|
作者
Kariofillis, C [1 ]
Konstadilaki, C
Nestoridis, V
机构
[1] Aristotle Univ Thessaloniki, Fac Sci, Dept Math, Thessaloniki 54124, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 147卷 / 03期
关键词
overconvergence; generic property; Taylor series; Universal series; smooth functions;
D O I
10.1007/s00605-005-0323-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of C be a simply connected domain in C, such that {infinity}U[C\(Omega) over bar is connected. If g is holomorphic in ohm and every derivative of g extends continuously on (Omega) over bar , then we write g is an element of A(infinity) (Omega).For g is an element of A infinity(Omega) and zeta is an element of (Omega) over bar we denote S-N(g,zeta) (z) = Sigma(N)(l=0) g(l) (zeta)/ll (z-zeta)(l).We prove the existence of a function f is an element of A infinity(Omega), such that the following hold: i) There exists a strictly increasing sequence mu n is an element of {0,1,2...},n = 1,2,.....such that, for every pair of compact sets Gamma,Delta subset of (Omega) over bar and every l is an element of {0,1,2,....} we have (zeta is an element of Gamma w is an element of Delta)sup sup partial derivative l/partial derivative wl S mu n(f,zeta)(w)-f((l))(w)-> 0, as ->+infinity and ii) For every compact set K subset of C with K boolean AND ($) over bar = 0 and K-c connected and every function h : K -> C continuous on K and holomorphic in K-0, there exists a subsequence {mu(l)(n)}(n=1)(infinity),such that, for every compact set L subset of (Omega) over bar we have (zeta is an element of L z is an element of K)sup sup S mu ln(f,zeta)(z)-h(z)-> 0, as n ->+infinity.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [31] Universal Taylor Series in Simply Connected Domains
    Christos Kariofillis
    Vassili Nestoridis
    Computational Methods and Function Theory, 2006, 6 (2) : 437 - 446
  • [32] A generalization of universal Taylor series in simply connected domains
    Tsirivas, N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) : 361 - 369
  • [33] Existence of Universal Taylor Series for Nonsimply Connected Domains
    Stephen J. Gardiner
    Constructive Approximation, 2012, 35 : 245 - 257
  • [34] Doubly universal Taylor series on simply connected domains
    Chatzigiannakidou, Nicky
    Vlachou, Vagia
    EUROPEAN JOURNAL OF MATHEMATICS, 2016, 2 (04) : 1031 - 1038
  • [35] Banach Spaces of Universal Taylor Series in the Disc Algebra
    Bernal-Gonzalez, Luis
    Jung, Andreas
    Mueller, Juergen
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (01) : 1 - 11
  • [36] Universal Taylor series have a strong form of universality
    Bayart, Frederic
    Nestoridis, Vassili
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 69 - 82
  • [37] Universal Taylor series have a strong form of universality
    Frédéric Bayart
    Vassili Nestoridis
    Journal d'Analyse Mathématique, 2008, 104 : 69 - 82
  • [38] Banach Spaces of Universal Taylor Series in the Disc Algebra
    Luis Bernal-González
    Andreas Jung
    Jürgen Müller
    Integral Equations and Operator Theory, 2016, 86 : 1 - 11
  • [39] Universal Taylor Series in Several Variables Depending on Parameters
    Gavrilopoulos, G.
    Maronikolakis, K.
    Nestoridis, V.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (02) : 261 - 275
  • [40] Universal Taylor Series in Several Variables Depending on Parameters
    G. Gavrilopoulos
    K. Maronikolakis
    V. Nestoridis
    Computational Methods and Function Theory, 2022, 22 : 261 - 275