Smooth universal Taylor Series

被引:14
|
作者
Kariofillis, C [1 ]
Konstadilaki, C
Nestoridis, V
机构
[1] Aristotle Univ Thessaloniki, Fac Sci, Dept Math, Thessaloniki 54124, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 147卷 / 03期
关键词
overconvergence; generic property; Taylor series; Universal series; smooth functions;
D O I
10.1007/s00605-005-0323-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of C be a simply connected domain in C, such that {infinity}U[C\(Omega) over bar is connected. If g is holomorphic in ohm and every derivative of g extends continuously on (Omega) over bar , then we write g is an element of A(infinity) (Omega).For g is an element of A infinity(Omega) and zeta is an element of (Omega) over bar we denote S-N(g,zeta) (z) = Sigma(N)(l=0) g(l) (zeta)/ll (z-zeta)(l).We prove the existence of a function f is an element of A infinity(Omega), such that the following hold: i) There exists a strictly increasing sequence mu n is an element of {0,1,2...},n = 1,2,.....such that, for every pair of compact sets Gamma,Delta subset of (Omega) over bar and every l is an element of {0,1,2,....} we have (zeta is an element of Gamma w is an element of Delta)sup sup partial derivative l/partial derivative wl S mu n(f,zeta)(w)-f((l))(w)-> 0, as ->+infinity and ii) For every compact set K subset of C with K boolean AND ($) over bar = 0 and K-c connected and every function h : K -> C continuous on K and holomorphic in K-0, there exists a subsequence {mu(l)(n)}(n=1)(infinity),such that, for every compact set L subset of (Omega) over bar we have (zeta is an element of L z is an element of K)sup sup S mu ln(f,zeta)(z)-h(z)-> 0, as n ->+infinity.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [21] Universal Taylor series with respect to a prescribed subsequence
    Mouze, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 498 (01)
  • [22] Universal Taylor series on convex subsets of Cn
    Daras, Nicholas J.
    Nestoridis, Vassili
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (11) : 1567 - 1579
  • [23] Boundary Behavior of Universal Taylor Series and Their Derivatives
    David H. Armitage
    George Costakis
    Constructive Approximation, 2006, 24 : 1 - 15
  • [24] Universal Taylor Series on Doubly Connected Domains
    Athanassia G. Bacharoglou
    Results in Mathematics, 2009, 53 : 9 - 18
  • [25] Boundary behavior of universal Taylor series and their derivatives
    Armitage, DH
    Costakis, G
    CONSTRUCTIVE APPROXIMATION, 2006, 24 (01) : 1 - 15
  • [26] Boundedness, regularity and smoothness of universal Taylor series
    Tsirivas, N.
    ARCHIV DER MATHEMATIK, 2006, 87 (05) : 427 - 435
  • [27] Boundedness, regularity and smoothness of universal Taylor series
    N. Tsirivas
    Archiv der Mathematik, 2006, 87 : 427 - 435
  • [28] Universal Taylor series with maximal cluster sets
    Bernal-Gonzalez, L.
    Bonilla, A.
    Calderon-Moreno, M. C.
    Prado-Bassas, J. A.
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 757 - 780
  • [29] Universal Taylor series on products of planar domains
    Kioulafa K.
    Kotsovolis G.
    Nestoridis V.
    Complex Analysis and its Synergies, 2021, 7 (2)
  • [30] Universal Taylor series on arbitrary planar domains
    Nestoridis, Vassili
    Papachristodoulos, Christos
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (7-8) : 363 - 367