Smooth universal Taylor Series

被引:14
|
作者
Kariofillis, C [1 ]
Konstadilaki, C
Nestoridis, V
机构
[1] Aristotle Univ Thessaloniki, Fac Sci, Dept Math, Thessaloniki 54124, Greece
[2] Univ Athens, Dept Math, Athens 15784, Greece
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 147卷 / 03期
关键词
overconvergence; generic property; Taylor series; Universal series; smooth functions;
D O I
10.1007/s00605-005-0323-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of C be a simply connected domain in C, such that {infinity}U[C\(Omega) over bar is connected. If g is holomorphic in ohm and every derivative of g extends continuously on (Omega) over bar , then we write g is an element of A(infinity) (Omega).For g is an element of A infinity(Omega) and zeta is an element of (Omega) over bar we denote S-N(g,zeta) (z) = Sigma(N)(l=0) g(l) (zeta)/ll (z-zeta)(l).We prove the existence of a function f is an element of A infinity(Omega), such that the following hold: i) There exists a strictly increasing sequence mu n is an element of {0,1,2...},n = 1,2,.....such that, for every pair of compact sets Gamma,Delta subset of (Omega) over bar and every l is an element of {0,1,2,....} we have (zeta is an element of Gamma w is an element of Delta)sup sup partial derivative l/partial derivative wl S mu n(f,zeta)(w)-f((l))(w)-> 0, as ->+infinity and ii) For every compact set K subset of C with K boolean AND ($) over bar = 0 and K-c connected and every function h : K -> C continuous on K and holomorphic in K-0, there exists a subsequence {mu(l)(n)}(n=1)(infinity),such that, for every compact set L subset of (Omega) over bar we have (zeta is an element of L z is an element of K)sup sup S mu ln(f,zeta)(z)-h(z)-> 0, as n ->+infinity.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 50 条
  • [1] Smooth Universal Taylor Series
    Ch. Kariofillis
    Ch. Konstadilaki
    V. Nestoridis
    Monatshefte für Mathematik, 2006, 147 : 249 - 257
  • [2] Smooth universal Taylor series on doubly connected domains
    Bacharoglou, Athanassia
    Kariofillis, Christos
    Konstadilaki, Chariklia
    Vlachou, Vagia
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 374 - 387
  • [3] Partially smooth universal Taylor series on products of simply connected domains
    Kotsovolis, Giorgos
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (03): : 657 - 669
  • [4] Partially smooth universal Taylor series on products of simply connected domains
    Giorgos Kotsovolis
    Monatshefte für Mathematik, 2020, 193 : 657 - 669
  • [5] On universal Taylor series
    Kahane, JP
    Melas, A
    Nestoridis, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 1003 - 1006
  • [6] Universal Taylor series
    Nestoridis, V
    ANNALES DE L INSTITUT FOURIER, 1996, 46 (05) : 1293 - &
  • [7] Mixing Taylor shifts and universal Taylor series
    Beise, H. -P.
    Meyrath, T.
    Mueller, J.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 136 - 142
  • [8] Universal Taylor series and summability
    Charpentier, S.
    Mouze, A.
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (01): : 153 - 167
  • [9] Universal Taylor series and summability
    S. Charpentier
    A. Mouze
    Revista Matemática Complutense, 2015, 28 : 153 - 167
  • [10] Doubly universal Taylor series
    Costakis, G.
    Tsirivas, N.
    JOURNAL OF APPROXIMATION THEORY, 2014, 180 : 21 - 31