Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines

被引:60
|
作者
Walker, N. Ryan [1 ]
Wissink, Martin L. [1 ]
DelVescovo, Dan A. [1 ]
Reitz, Rolf D. [1 ]
机构
[1] Univ Wisconsin, Engine Res Ctr, Madison, WI 53706 USA
关键词
RCCI; COMBUSTION;
D O I
10.1115/1.4030110
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reactivity controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the use of gasoline as the premixed low-reactivity fuel. However, there is interest in exploring the use of alternative fuels in advanced combustion strategies. Due to the strong market growth of natural gas as a fuel in both mobile and stationary applications, a study on the use of methane for RCCI combustion was performed. Single cylinder heavy-duty engine experiments were undertaken to examine the operating range of the RCCI combustion strategy with methane/diesel fueling and were compared against gasoline/diesel RCCI operation. The experimental results show a significant load extension of RCCI engine operation with methane/diesel fueling compared to gasoline/diesel fueling. For gasoline/diesel fueling, a maximum load of 6.9 bar gross indicated mean effective pressure (IMEPg) at CA50 = 0 deg aTDC (after top dead center) and 7.0 bar IMEPg at CA50 = 4 deg aTDC was obtained without use of exhaust gas recirculation (EGR). For methane/diesel fueling, a maximum load of 15.4 bar IMEPg at CA50 = 0 deg aTDC and 17.3 bar IMEPg at CA50 = 4 deg aTDC was achieved, showing the effectiveness of the use of methane in extending the load limit for RCCI engine operation.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Natural Gas/Hydrogen blends for heavy-duty spark ignition engines: Performance and emissions analysis
    De Simio, Luigi
    Iannaccone, Sabato
    Guido, Chiara
    Napolitano, Pierpaolo
    Maiello, Armando
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 743 - 757
  • [22] Experimental Characterization of Hydrocarbons and Nitrogen Oxides Production in a Heavy-Duty Diesel-Natural Gas Reactivity-Controlled Compression Ignition Engine
    Silvagni, Giacomo
    Narayanan, Abhinandhan
    Ravaglioli, Vittorio
    Srinivasan, Kalyan Kumar
    Krishnan, Sundar Rajan
    Collins, Nik
    Puzinauskas, Paulius
    Ponti, Fabrizio
    ENERGIES, 2023, 16 (13)
  • [23] Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines
    Benajes, Jesus
    Garcia, Antonio
    Monsalve-Serrano, Javier
    Boronat, Vicente
    APPLIED SCIENCES-BASEL, 2017, 7 (01):
  • [24] CFD Study of Reactivity Controlled Compression Ignition (RCCI) combustion in a heavy-duty diesel engine
    Kakaee, Amir-Hasan
    Rahnama, Pourya
    Paykani, Amin
    Periodica Polytechnica Transportation Engineering, 2015, 43 (04): : 177 - 183
  • [25] Modeling and Control of Combustion Phasing in Dual-Fuel Compression Ignition Engines
    Sui, Wenbo
    Gonzalez, Jorge Pulpeiro
    Hall, Carrie M.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2019, 141 (05):
  • [26] Multi-input-multi-output optimization of reactivity-controlled compression-ignition combustion in a heavy-duty diesel engine running on natural gas/diesel fuel
    Ebrahimi, Mojtaba
    Najafi, Mohammad
    Jazayeri, Seyed Ali
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2020, 21 (03) : 470 - 483
  • [27] New developments in dual-fuel engine conversions for heavy-duty applications
    Diesel Progress Engines & Drives, 1995, 61 (10):
  • [28] Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load
    Pedrozo, Vinicius B.
    May, Ian
    Dalla Nora, Macklini
    Cairns, Alasdair
    Zhao, Hua
    APPLIED ENERGY, 2016, 165 : 166 - 182
  • [29] Development of compressed natural gas/diesel dual-fuel turbocharged compression ignition engine
    Liu, SH
    Wang, ZY
    Ren, J
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2003, 217 (D9) : 839 - 845
  • [30] Emissions Characterization from Different Technology Heavy-Duty Engines Retrofitted for CNG/Diesel Dual-Fuel Operation
    Besch, Marc C.
    Israel, Joshua
    Thiruvengadam, Arvind
    Kappanna, Hemanth
    Carder, Daniel
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2015, 8 (03) : 1342 - 1358