Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional

被引:58
|
作者
Gambacurta, D. [1 ,2 ]
Grasso, M. [3 ]
Engel, J. [4 ]
机构
[1] Dipartimento Fis & Astron, I-95123 Catania, Italy
[2] Ist Nazl Fis Nucl, I-95123 Catania, Italy
[3] Univ Paris 11, Inst Phys Nucl, IN2P3, CNRS, F-91406 Orsay, France
[4] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 03期
关键词
SPHERICAL NUCLEI;
D O I
10.1103/PhysRevC.92.034303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We make use of a subtraction procedure, introduced to overcome double-counting problems in beyond-meanfield theories, in the second random-phase-approximation (SRPA) for the first time. This procedure guarantees the stability of the SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density-functional theory. We illustrate applications to the monopole and quadrupole response and to low-lying 0(+) and 2(+) states in the nucleus O-16. We show that the subtraction procedure leads to (i) results that are weakly cutoff dependent and (ii) a considerable reduction of the SRPA downwards shift with respect to the random-phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of two particle-two hole configurations (2p2h) on the excitation spectra of medium-mass and heavy nuclei.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Random-phase approximation and its applications in computational chemistry and materials science
    Ren, Xinguo
    Rinke, Patrick
    Joas, Christian
    Scheffler, Matthias
    JOURNAL OF MATERIALS SCIENCE, 2012, 47 (21) : 7447 - 7471
  • [42] BEYOND THE RANDOM-PHASE APPROXIMATION IN NONLOCAL-DENSITY-FUNCTIONAL THEORY
    HU, CD
    LANGRETH, DC
    PHYSICAL REVIEW B, 1986, 33 (02): : 943 - 959
  • [43] Beyond-mean-field corrections within the second random-phase approximation
    Grasso, M.
    Gambacurta, D.
    Engel, J.
    XXI INTERNATIONAL SCHOOL ON NUCLEAR PHYSICS, NEUTRON PHYSICS AND APPLICATIONS & INTERNATIONAL SYMPOSIUM ON EXOTIC NUCLEI (ISEN-2015), 2016, 724
  • [44] Magnetic dipole excitations in magic nuclei with subtracted second random-phase approximation
    Yang, M. J.
    Bai, C. L.
    Sagawa, H.
    Zhang, H. Q.
    PHYSICAL REVIEW C, 2024, 109 (05)
  • [45] Second random-phase approximation, Thouless' theorem, and the stability condition reexamined and clarified
    Papakonstantinou, P.
    PHYSICAL REVIEW C, 2014, 90 (02):
  • [46] A second-order doubles correction to excitation energies in the random-phase approximation
    Christiansen, O
    Bak, KL
    Koch, H
    Sauer, SPA
    CHEMICAL PHYSICS LETTERS, 1998, 284 (1-2) : 47 - 55
  • [47] Higher Random-Phase Approximation as an Approximation to the Equations of Motion
    Shibuya, Tai-Ichi
    McKoy, Vincent
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (06): : 2208 - 2218
  • [48] Low-energy effective interactions beyond the constrained random-phase approximation by the functional renormalization group
    Kinza, Michael
    Honerkamp, Carsten
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [49] Response function technique for calculating the random-phase approximation correlation energy
    Shimizu, YR
    Donati, P
    Broglia, RA
    PHYSICAL REVIEW LETTERS, 2000, 85 (11) : 2260 - 2263
  • [50] Total energy of solids: An exchange and random-phase approximation correlation study
    Miyake, T
    Aryasetiawan, F
    Kotani, T
    van Schilfgaarde, M
    Usuda, M
    Terakura, K
    PHYSICAL REVIEW B, 2002, 66 (24) : 1 - 4