Subtraction method in the second random-phase approximation: First applications with a Skyrme energy functional

被引:58
|
作者
Gambacurta, D. [1 ,2 ]
Grasso, M. [3 ]
Engel, J. [4 ]
机构
[1] Dipartimento Fis & Astron, I-95123 Catania, Italy
[2] Ist Nazl Fis Nucl, I-95123 Catania, Italy
[3] Univ Paris 11, Inst Phys Nucl, IN2P3, CNRS, F-91406 Orsay, France
[4] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27516 USA
来源
PHYSICAL REVIEW C | 2015年 / 92卷 / 03期
关键词
SPHERICAL NUCLEI;
D O I
10.1103/PhysRevC.92.034303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We make use of a subtraction procedure, introduced to overcome double-counting problems in beyond-meanfield theories, in the second random-phase-approximation (SRPA) for the first time. This procedure guarantees the stability of the SRPA (so that all excitation energies are real). We show that the method fits perfectly into nuclear density-functional theory. We illustrate applications to the monopole and quadrupole response and to low-lying 0(+) and 2(+) states in the nucleus O-16. We show that the subtraction procedure leads to (i) results that are weakly cutoff dependent and (ii) a considerable reduction of the SRPA downwards shift with respect to the random-phase approximation (RPA) spectra (systematically found in all previous applications). This implementation of the SRPA model will allow a reliable analysis of the effects of two particle-two hole configurations (2p2h) on the excitation spectra of medium-mass and heavy nuclei.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] RANDOM-PHASE APPROXIMATION IN A LOCAL REPRESENTATION
    REINHARD, PG
    BRACK, M
    GENZKEN, O
    PHYSICAL REVIEW A, 1990, 41 (10): : 5568 - 5582
  • [32] Communication: Explicitly-correlated second-order correction to the correlation energy in the random-phase approximation
    Hehn, Anna-Sophia
    Klopper, Wim
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (18):
  • [33] Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei
    Nesterenko, V. O.
    Kleinig, W.
    Kvasil, J.
    Vesely, P.
    Reinhard, P. -G.
    Dolci, D. S.
    PHYSICAL REVIEW C, 2006, 74 (06):
  • [34] REMARKS ON EXTENDED RANDOM-PHASE APPROXIMATION
    RAJAGOPAL, AK
    NUCLEAR PHYSICS, 1964, 57 (02): : 435 - &
  • [35] NUCLEAR ROTATION AND RANDOM-PHASE APPROXIMATION
    MARSHALEK, ER
    WENESER, J
    ANNALS OF PHYSICS, 1969, 53 (03) : 569 - +
  • [36] RANDOM-PHASE APPROXIMATION AND BROKEN SYMMETRY
    DAVIS, ED
    HEISS, WD
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1986, 12 (09) : 805 - 820
  • [37] Doorway states in the random-phase approximation
    De Pace, A.
    Molinari, A.
    Weidenmuller, H. A.
    ANNALS OF PHYSICS, 2014, 351 : 579 - 592
  • [38] Random-phase approximation and its applications in computational chemistry and materials science
    Xinguo Ren
    Patrick Rinke
    Christian Joas
    Matthias Scheffler
    Journal of Materials Science, 2012, 47 : 7447 - 7471
  • [39] Thermal quasiparticle random-phase approximation calculations of stellar electron capture rates with the Skyrme effective interaction
    Dzhioev, Alan A.
    Vdovin, A., I
    Stoyanov, Ch
    PHYSICAL REVIEW C, 2019, 100 (02)
  • [40] RANDOM-PHASE APPROXIMATION AS A MACROSCOPIC DESCRIPTION
    STRUTINSKY, VM
    ABROSIMOV, VI
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1990, 336 (03): : 253 - 258