Conformation and environment of channel-forming peptides: A simulation study

被引:17
|
作者
Johnston, JM
Cook, GA
Tomich, JM
Sansom, MSP [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[2] Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA
基金
英国惠康基金;
关键词
D O I
10.1529/biophysj.105.069625
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water, micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W, T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.
引用
收藏
页码:1855 / 1864
页数:10
相关论文
共 50 条
  • [41] STUDY OF CHANNEL-FORMING IN 4-HIGH PASS WITH OFFSET AXES
    ROZHDESTVENSKII, YV
    STEEL IN TRANSLATION, 1994, 24 (07) : 52 - 54
  • [42] Structural design and characterization of a channel-forming peptide
    Krittanai, C
    Panyim, S
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2004, 37 (04): : 460 - 465
  • [43] STRUCTURE-FUNCTION OF THE CHANNEL-FORMING COLICINS
    CRAMER, WA
    HEYMANN, JB
    SCHENDEL, SL
    DERIY, BN
    COHEN, FS
    ELKINS, PA
    STAUFFACHER, CV
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1995, 24 : 611 - 641
  • [44] ESTIMATING CHANNEL-FORMING DISCHARGE IN URBAN WATERCOURSES
    Annable, W. K.
    Lounder, V. G.
    Watson, C. C.
    RIVER RESEARCH AND APPLICATIONS, 2011, 27 (06) : 738 - 753
  • [45] GRADIENT-N CHANNEL-FORMING EQUIPMENT
    TIKHONOV, OS
    KALAYCHAN, NA
    GORODINSKIY, AD
    PARSHIN, VA
    VAYKHONSKIY, VY
    FEYGIN, VI
    LURYE, LA
    MILYAVSKIY, IS
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1978, 32-3 (01) : 15 - 19
  • [46] ON THE REPORTED CHANNEL-FORMING ACTIVITY OF HMT TOXIN
    HOLDEN, MJ
    COLOMBINI, M
    JOURNAL OF MEMBRANE BIOLOGY, 1988, 103 (02): : 205 - 206
  • [47] DEPENDENCE OF THE CONFORMATION OF A COLICIN E1 CHANNEL-FORMING PEPTIDE ON ACIDIC PH AND SOLVENT POLARITY
    BRUNDEN, KR
    URATANI, Y
    CRAMER, WA
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1984, 259 (12) : 7682 - 7687
  • [48] STRUCTURE OF A CHANNEL-FORMING COLICIN-IA
    CHOE, SH
    KONISKY, J
    STROUD, R
    BIOPHYSICAL JOURNAL, 1987, 51 (02) : A249 - A249
  • [49] SYNTHETIC CHANNEL-FORMING COMPOUNDS IN VESICLE SYSTEMS
    MENGER, FM
    BOLETIN DE LA SOCIEDAD CHILENA DE QUIMICA, 1990, 35 (01): : 33 - 38
  • [50] THE CONNEXIN FAMILY OF INTERCELLULAR CHANNEL-FORMING PROTEINS
    WHITE, TW
    BRUZZONE, R
    PAUL, DL
    KIDNEY INTERNATIONAL, 1995, 48 (04) : 1148 - 1157