Conformation and environment of channel-forming peptides: A simulation study

被引:17
|
作者
Johnston, JM
Cook, GA
Tomich, JM
Sansom, MSP [1 ]
机构
[1] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
[2] Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA
基金
英国惠康基金;
关键词
D O I
10.1529/biophysj.105.069625
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Ion channel-forming peptides enable us to study the conformational dynamics of a transmembrane helix as a function of sequence and environment. Molecular dynamics simulations are used to study the conformation and dynamics of three 22-residue peptides derived from the second transmembrane domain of the glycine receptor (NK4-M2GlyR-p22). Simulations are performed on the peptide in four different environments: trifluoroethanol/water; SDS micelles; DPC micelles; and a DMPC bilayer. A hierarchy of alpha-helix stabilization between the different environments is observed such that TFE/water, micelles < bilayers. Local clustering of trifluoroethanol molecules around the peptide appears to help stabilize an alpha-helical conformation. Single (S22W) and double (S22W, T19R) substitutions at the C-terminus of NK4-M2GlyR-p22 help to stabilize a helical conformation in the micelle and bilayer environments. This correlates with the ability of the W22 and R19 side chains to form H-bonds with the headgroups of lipid or detergent molecules. This study provides a first atomic resolution comparison of the structure and dynamics of NK4-M2GlyR-p22 peptides in membrane and membrane-mimetic environments, paralleling NMR and functional studies of these peptides.
引用
收藏
页码:1855 / 1864
页数:10
相关论文
共 50 条
  • [31] MEMBRANE DAMAGE BY CHANNEL-FORMING PROTEINS
    BHAKDI, S
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1984, 365 (03): : 226 - 227
  • [32] Channel-forming toxins: Tales of transformation
    Gouaux, E
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (04) : 566 - 573
  • [33] Dipole modifiers affect channel-forming activity of amyloid and amyloid-like peptides
    Efimova, S. S.
    Zakharov, V. V.
    Ostroumova, O. S.
    FEBS JOURNAL, 2015, 282 : 199 - 199
  • [34] PROGRESS ON THE CRYSTAL-STRUCTURE OF COLICIN E1 CHANNEL-FORMING PEPTIDES
    ELKINS, P
    SONG, HY
    CRAMER, W
    STAUFFACHER, C
    BIOPHYSICAL JOURNAL, 1993, 64 (02) : A374 - A374
  • [35] Crystal structure of the channel-forming polypeptide antiamoebin in a membrane-mimetic environment
    Karle, IL
    Perozzo, MA
    Mishra, VK
    Balaram, P
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) : 5501 - 5504
  • [36] STUDY OF CHANNEL-FORMING PROPERTIES OF STEATODA PAYKULLIANA SPIDER VENOM
    SOKOLOV, YV
    CHANTURIYA, AN
    LISHKO, VK
    BIOFIZIKA, 1984, 29 (04): : 620 - 623
  • [37] Evaluating channel-forming discharges: A study of large rivers in Ohio
    Powell, GE
    Mecklenburg, D
    Ward, A
    TRANSACTIONS OF THE ASABE, 2006, 49 (01): : 35 - 46
  • [38] WAYS OF IMPROVING CHANNEL-FORMING EQUIPMENT
    VOLFBEIN, SP
    KOROP, BV
    USOV, IS
    SHTULMAN, AI
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1978, 32-3 (06) : 34 - 38
  • [39] ROFLAMYCOIN - A NEW CHANNEL-FORMING ANTIBIOTIC
    GRIGORJEV, P
    SCHLEGEL, R
    THRUM, H
    ERMISHKIN, L
    BIOCHIMICA ET BIOPHYSICA ACTA, 1985, 821 (02) : 297 - 304
  • [40] Qualitative computational bioanalytics: Assembly of viral channel-forming peptides around mono and divalent ions
    Li, Li-Hua
    Hsu, Hao-Jen
    Fischer, Wolfgang B.
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 442 (1-2) : 85 - 91