Super Solutions of Random Instances of Satisfiability

被引:0
|
作者
Zhang, Peng [1 ]
Gao, Yong [1 ]
机构
[1] Univ British Columbia Okanagan, Dept Comp Sci, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada
来源
关键词
RANDOM CONSTRAINT SATISFACTION;
D O I
10.1007/978-3-319-19647-3_29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the probabilistic behaviour of super solutions to random instances of the Boolean Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs). Our analysis focuses on a special type of super solutions, the (1,0)-super solutions. For random k-SAT, we establish the exact threshold of the phase transition of the solution probability for the cases of k = 2 and 3, and upper and lower bounds on the threshold of the phase transition for the case of k >= 4. For CSPs, by overcoming difficulties that do not exist in the probabilistic analysis of the standard solution concept, we manage to derive a non-trivial upper bound on the threshold for the probability of having a super solution.
引用
收藏
页码:314 / 325
页数:12
相关论文
共 50 条
  • [31] Dynamic circuit generation for solving specific problem instances of Boolean Satisfiability
    Rashid, A
    Leonard, J
    Mangione-Smith, WH
    IEEE SYMPOSIUM ON FPGAS FOR CUSTOM COMPUTING MACHINES, PROCEEDINGS, 1998, : 196 - 204
  • [32] Super solutions of random (3+p)-SAT
    Wang, Bin
    Zhou, Guangyan
    THEORETICAL COMPUTER SCIENCE, 2019, 793 : 14 - 27
  • [33] An exactly solvable random satisfiability problem
    Caracciolo, S
    Sportiello, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (36): : 7661 - 7688
  • [34] The Satisfiability Threshold For Random Linear Equations
    Peter Ayre
    Amin Coja-Oghlan
    Pu Gao
    Noëla Müller
    Combinatorica, 2020, 40 : 179 - 235
  • [35] On the Probabilistic approach to the random satisfiability problem
    Parisi, G
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 203 - 213
  • [36] Spanning trees in random satisfiability problems
    Ramezanpour, A.
    Moghimi-Araghi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18): : 4901 - 4909
  • [37] The Satisfiability Threshold For Random Linear Equations
    Ayre, Peter
    Coja-Oghlan, Amin
    Gao, Pu
    Mueller, Noela
    COMBINATORICA, 2020, 40 (02) : 179 - 235
  • [38] Message passing in random satisfiability problems
    Mézard, M
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 1061 - 1068
  • [39] Balanced K-satisfiability and biased random K-satisfiability on trees
    Sumedha
    Krishnamurthy, Supriya
    Sahoo, Sharmistha
    PHYSICAL REVIEW E, 2013, 87 (04):
  • [40] Are We Generating Instances Uniformly at Random?
    Ceberio, Josu
    Mendiburu, Alexander
    Lozano, Jose A.
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1645 - 1651