Super Solutions of Random Instances of Satisfiability

被引:0
|
作者
Zhang, Peng [1 ]
Gao, Yong [1 ]
机构
[1] Univ British Columbia Okanagan, Dept Comp Sci, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada
来源
FRONTIERS IN ALGORITHMICS (FAW 2015) | 2015年 / 9130卷
关键词
RANDOM CONSTRAINT SATISFACTION;
D O I
10.1007/978-3-319-19647-3_29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the probabilistic behaviour of super solutions to random instances of the Boolean Satisfiability (SAT) and Constraint Satisfaction Problems (CSPs). Our analysis focuses on a special type of super solutions, the (1,0)-super solutions. For random k-SAT, we establish the exact threshold of the phase transition of the solution probability for the cases of k = 2 and 3, and upper and lower bounds on the threshold of the phase transition for the case of k >= 4. For CSPs, by overcoming difficulties that do not exist in the probabilistic analysis of the standard solution concept, we manage to derive a non-trivial upper bound on the threshold for the probability of having a super solution.
引用
收藏
页码:314 / 325
页数:12
相关论文
共 50 条
  • [21] Communities of solutions in single solution clusters of a random K-satisfiability formula
    Zhou, Haijun
    Ma, Hui
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [22] A remark on pseudo proof systems and hard instances of the satisfiability problem
    Maly, Jan
    Mueller, Moritz
    MATHEMATICAL LOGIC QUARTERLY, 2018, 64 (06) : 418 - 428
  • [23] Generating Random SAT Instances: Multiple Solutions could be Predefined and Deeply Hidden
    Zhao, Dongdong
    Liao, Lei
    Luo, Wenjian
    Xiang, Jianwen
    Jiang, Hao
    Hu, Xiaoyi
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2023, 76 : 435 - 470
  • [24] Generating Random SAT Instances: Multiple Solutions could be Predefined and Deeply Hidden
    Zhao D.
    Liao L.
    Luo W.
    Xiang J.
    Jiang H.
    Hu X.
    Journal of Artificial Intelligence Research, 2023, 76 : 435 - 470
  • [25] On the maximum satisfiability of random formulas
    Achlioptas, Dimitris
    Naor, Assaf
    Peres, Yuval
    JOURNAL OF THE ACM, 2007, 54 (02)
  • [26] Solution clustering in random satisfiability
    D. Achlioptas
    The European Physical Journal B, 2008, 64 : 395 - 402
  • [27] Solution clustering in random satisfiability
    Achlioptas, D.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 64 (3-4): : 395 - 402
  • [28] An explicit semidefinite characterization of satisfiability for Tseitin instances on toroidal grid graphs
    Miguel F. Anjos
    Annals of Mathematics and Artificial Intelligence, 2006, 48 : 1 - 14
  • [29] An explicit semidefinite characterization of satisfiability for Tseitin instances on toroidal grid graphs
    Anjos, Miguel F.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2006, 48 (1-2) : 1 - 14
  • [30] Locality in Random SAT Instances
    Giraldez-Cru, Jesus
    Levy, Jordi
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 638 - 644