The Scheme of Detecting Encoded Malicious Web Pages Based on Information Entropy

被引:2
|
作者
Liang, Shuang [1 ]
Ma, Yong [2 ]
Huang, Yanyu [1 ]
Guo, Jia [1 ]
Jia, Chunfu [1 ]
机构
[1] Nankai Univ, Coll Comp & Control Engn, Tianjin, Peoples R China
[2] Civil Aviat Univ, Informat Secur Evaluat Ctr, Tianjin, Peoples R China
关键词
malicious web pages detection; information entropy; signature-based detection;
D O I
10.1109/IMIS.2016.82
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malicious web page is an increasingly important problem that threatens the security of computer systems and users' privacy. The malicious web pages can escape the traditional static signature-based detection through polymorphism and metamorphism technique. In this paper, we propose a scheme based on information entropy theory to detect the encoded malicious web pages. Through the experiment and evaluation, we demonstrate our approach is practicable to detect the encoded malicious web pages and meeting the demand of practical use.
引用
收藏
页码:310 / 312
页数:3
相关论文
共 50 条
  • [31] GuidedTracker: Track the Victims with Access Logs to Finding Malicious Web Pages
    Sha, Hongzhou
    Liu, Qingyun
    Zhou, Zhou
    Zheng, Chao
    [J]. 2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 564 - 569
  • [32] EINSPECT: Evolution-Guided Analysis and Detection of Malicious Web Pages
    Eshete, Birhanu
    Villafiorita, Adolfo
    Weldemariam, Komminist
    Zulkernine, Mohammad
    [J]. 2013 IEEE 37TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2013, : 375 - 380
  • [33] Classifying Malicious Web Pages by Using an Adaptive Support Vector Machine
    Hwang, Young Sup
    Kwon, Jin Baek
    Moon, Jae Chan
    Cho, Seong Je
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2013, 9 (03): : 395 - 404
  • [34] Restrain the Linkage to Malicious Web Pages though Negative Link Weight
    Luo, Jiangfeng
    Zhu, Cheng
    Zhang, Weiming
    Liu, Zhong
    Huang, Jincai
    [J]. KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 262 - 267
  • [35] An adaptive system for detecting malicious queries in web attacks
    Ying DONG
    Yuqing ZHANG
    Hua MA
    Qianru WU
    Qixu LIU
    Kai WANG
    Wenjie WANG
    [J]. Science China(Information Sciences), 2018, 61 (03) : 175 - 190
  • [36] LogBERT-BiLSTM: Detecting Malicious Web Requests
    Ramos Junior, Levi S.
    Macedo, David
    Oliveira, Adriano L. I.
    Zanchettin, Cleber
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT III, 2022, 13531 : 704 - 715
  • [37] Detecting Malicious Web Requests Using an Enhanced TextCNN
    Yu, Lian
    Chen, Lihao
    Dong, Jingtao
    Li, Mengyuan
    Liu, Lijun
    Zhao, Bai
    Zhang, Chen
    [J]. 2020 IEEE 44TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2020), 2020, : 768 - 777
  • [38] An adaptive system for detecting malicious queries in web attacks
    Dong, Ying
    Zhang, Yuqing
    Ma, Hua
    Wu, Qianru
    Liu, Qixu
    Wang, Kai
    Wang, Wenjie
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (03)
  • [39] An adaptive system for detecting malicious queries in web attacks
    Ying Dong
    Yuqing Zhang
    Hua Ma
    Qianru Wu
    Qixu Liu
    Kai Wang
    Wenjie Wang
    [J]. Science China Information Sciences, 2018, 61
  • [40] Information categorization in web pages and sites
    [J]. Carchiolo, V. (car@diit.unict.it), 2005, IOS Press (03):