The Scheme of Detecting Encoded Malicious Web Pages Based on Information Entropy

被引:2
|
作者
Liang, Shuang [1 ]
Ma, Yong [2 ]
Huang, Yanyu [1 ]
Guo, Jia [1 ]
Jia, Chunfu [1 ]
机构
[1] Nankai Univ, Coll Comp & Control Engn, Tianjin, Peoples R China
[2] Civil Aviat Univ, Informat Secur Evaluat Ctr, Tianjin, Peoples R China
关键词
malicious web pages detection; information entropy; signature-based detection;
D O I
10.1109/IMIS.2016.82
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malicious web page is an increasingly important problem that threatens the security of computer systems and users' privacy. The malicious web pages can escape the traditional static signature-based detection through polymorphism and metamorphism technique. In this paper, we propose a scheme based on information entropy theory to detect the encoded malicious web pages. Through the experiment and evaluation, we demonstrate our approach is practicable to detect the encoded malicious web pages and meeting the demand of practical use.
引用
收藏
页码:310 / 312
页数:3
相关论文
共 50 条
  • [21] Information Retrieval Based on Image Detection on Web Pages
    El-Bakry, Hazem M.
    Mastorakis, Nikos
    [J]. PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS (CIMMACS '08): RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2008, : 221 - +
  • [22] ShellBreaker: Automatically detecting PHP-based malicious web shells
    Li, Yu
    Huang, Jin
    Ikusan, Ademola
    Mitchell, Milliken
    Zhang, Junjie
    Dai, Rui
    [J]. COMPUTERS & SECURITY, 2019, 87
  • [23] Content Information Extraction of Theme Web Pages based on Tag Information
    Wang, Jie
    Wu, Jian
    Zhang, Yafeng
    He, Guowan
    [J]. 2014 SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID 2014), VOL 1, 2014, : 501 - 504
  • [24] Detection of Malicious Web Pages Using System Calls Sequences
    Canfora, Gerardo
    Medvet, Eric
    Mercaldo, Francesco
    Visaggio, Corrado Aaron
    [J]. AVAILABILITY, RELIABILITY, AND SECURITY IN INFORMATION SYSTEMS, 2014, 8708 : 226 - +
  • [25] UAC: A Lightweight and Scalable Approach to Detect Malicious Web Pages
    Kaur, Harneet
    Madan, Sanjay
    Sehgal, Rakesh Kumar
    [J]. MODERN TRENDS AND TECHNIQUES IN COMPUTER SCIENCE (CSOC 2014), 2014, 285 : 241 - 261
  • [26] FINE-GRAINED MINING AND CLASSIFICATION OF MALICIOUS WEB PAGES
    Yue, Tao
    Sun, Jianhua
    Chen, Hao
    [J]. 2013 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL MANUFACTURING AND AUTOMATION (ICDMA), 2013, : 616 - 619
  • [27] Detecting phishing web pages based on image perceptual hashing technology
    State Key Laboratory of Software Engineering, Wuhan University, Wuhan, 430072, China
    不详
    [J]. Intl. J. Adv. Comput. Technolog., 2012, 2 (139-145):
  • [28] Detecting the content related parts of web pages
    Li, Y
    Gong, ZG
    Qi, K
    [J]. 2005 INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1071 - 1074
  • [29] Identification of Malicious Web Pages Through Analysis of Underlying DNS and Web Server Relationships
    Seifert, Christian
    Welch, Ian
    Komisarczuk, Peter
    Aval, Chiraag Uday
    Endicott-Popovsky, Barbara
    [J]. 2008 IEEE 33RD CONFERENCE ON LOCAL COMPUTER NETWORKS, VOLS 1 AND 2, 2008, : 910 - +
  • [30] Two-Stage Classification Model to Detect Malicious Web Pages
    Van Lam Le
    Welch, Ian
    Gao, Xiaoying
    Komisarczuk, Peter
    [J]. 25TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA 2011), 2011, : 113 - 120