Species-identification of wasps using principal component associative memories

被引:39
|
作者
Weeks, PJD
O'Neill, MA
Gaston, KJ
Gauld, ID
机构
[1] Hope Entomol Collect, Oxford OX1 3PW, England
[2] Nat Hist Museum, Dept Entomol, London SW7 5BD, England
[3] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
关键词
principal components analysis; species-identification; taxonomy;
D O I
10.1016/S0262-8856(98)00161-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach to image-based insect specimen identification. exploiting the ability of principal component auto associative memories to form trainable classifiers, which may be used to identify unknown images. The system utilises the differences between a pair of reconstructed images produced when the unknown image is included in, and then excluded from the training set encoded by the auto associative memory. A non-parametric statistical correlation metric, Kendall's t. was used to correlate the reconstructed images. The approach has been applied to the species-identification of closely related parasitic wasps based upon their wing venation and pigmentation patterns. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:861 / 866
页数:6
相关论文
共 50 条
  • [1] Remote aerosol species-identification using IR scattering spectroscopy
    Niu, Shupeng
    Philbrick, C. Russell
    Hallen, Hans D.
    LASER RADAR TECHNOLOGY AND APPLICATIONS XIX; AND ATMOSPHERIC PROPAGATION XI, 2014, 9080
  • [2] A novel algorithm for automatic species identification using principal component analysis
    Sen, S
    Narasimhan, S
    Konar, A
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2005, 3776 : 605 - 610
  • [3] Genomic data mining for species identification using principal component analysis
    Sen, S
    Narasimhan, S
    Konar, A
    Chakraborty, UK
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1256 - 1259
  • [4] Identification of freshwater zooplankton species using protein profiling and principal component analysis
    Hynek, Radovan
    Kuckova, Stepanka
    Cejnar, Pavel
    Junkova, Petra
    Prikryl, Ivo
    Ambrozova, Jana Rihova
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2018, 16 (03): : 199 - 204
  • [5] USING GENERALIZED PRINCIPAL COMPONENT ANALYSIS TO ACHIEVE ASSOCIATIVE MEMORY IN A HOPFIELD NET
    COOMBES, S
    TAYLOR, JG
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1994, 5 (01) : 75 - 88
  • [6] System identification using augmented principal component analysis
    Vijaysai, P
    Gudi, RD
    Lakshminarayanan, S
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 4179 - 4184
  • [7] Identification of mitochondrial deficiency using principal component analysis
    Gilles Durrieu
    Thierry Letellier
    Jaromír Antoch
    Jean-Marc Deshouillers
    Monique Malgat
    Jean-Pierre Mazat
    Molecular and Cellular Biochemistry, 1997, 174 : 149 - 156
  • [8] Identification of mitochondrial deficiency using principal component analysis
    Durrieu, G
    Letellier, T
    Antoch, J
    Deshouillers, JM
    Malgat, M
    Mazat, JP
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 1997, 174 (1-2) : 149 - 156
  • [9] Identification of faulty sensors using principal component analysis
    Dunia, R
    Qin, SJ
    Edgar, TF
    McAvoy, TJ
    AICHE JOURNAL, 1996, 42 (10) : 2797 - 2812
  • [10] Species-identification dots: a potent tool for developing genome microbiology
    Naimuddin, M
    Kurazono, T
    Zhang, YH
    Watanabe, T
    Yamaguchi, M
    Nishigaki, K
    GENE, 2000, 261 (02) : 243 - 250