System identification using augmented principal component analysis

被引:0
|
作者
Vijaysai, P [1 ]
Gudi, RD [1 ]
Lakshminarayanan, S [1 ]
机构
[1] Indian Inst Technol, Dept Chem Engn, Bombay 400076, Maharashtra, India
关键词
augmented PCA; collinearity problems; error-in-variables;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The total least squares (TLS) technique has been extensively used for the identification of dynamic systems when both the inputs and outputs are corrupted with noise. But the major limitation of this technique has been the difficulty in identifying the actual parameters when the collinearity in the input data leads to several "small" eigenvalues. This paper proposes a novel technique namely augmented principal component analysis (APCA) to deal with collinearity problems in the error-in-variable formulation. The APCA formulation can also be used to determine the least squares prediction error when an appropriate operator is chosen. This property has been used for the nonlinear structure selection through forward selection methodology. The efficacy of the new technique has been illustrated through representative case studies taken from the literature.
引用
收藏
页码:4179 / 4184
页数:6
相关论文
共 50 条
  • [1] Online identification of nonlinear system using reduced kernel principal component analysis
    Okba Taouali
    Ilyes Elaissi
    Hassani Messaoud
    [J]. Neural Computing and Applications, 2012, 21 : 161 - 169
  • [2] Online identification of nonlinear system using reduced kernel principal component analysis
    Taouali, Okba
    Elaissi, Ilyes
    Messaoud, Hassani
    [J]. NEURAL COMPUTING & APPLICATIONS, 2012, 21 (01): : 161 - 169
  • [3] Biometric Identification System Based on Principal Component Analysis
    Lionnie, Regina
    Alaydrus, Mudrik
    [J]. 2016 12TH INTERNATIONAL CONFERENCE ON MATHEMATICS, STATISTICS, AND THEIR APPLICATIONS (ICMSA), 2016, : 59 - 63
  • [4] Wiener System Identification by Weighted Principal Component Analysis
    Zhang, Qinghua
    Laurain, Vincent
    [J]. 2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 1705 - 1710
  • [5] Identification of faulty sensors using principal component analysis
    Dunia, R
    Qin, SJ
    Edgar, TF
    McAvoy, TJ
    [J]. AICHE JOURNAL, 1996, 42 (10) : 2797 - 2812
  • [6] Identification of mitochondrial deficiency using principal component analysis
    Durrieu, G
    Letellier, T
    Antoch, J
    Deshouillers, JM
    Malgat, M
    Mazat, JP
    [J]. MOLECULAR AND CELLULAR BIOCHEMISTRY, 1997, 174 (1-2) : 149 - 156
  • [7] Identification of mitochondrial deficiency using principal component analysis
    Gilles Durrieu
    Thierry Letellier
    Jaromír Antoch
    Jean-Marc Deshouillers
    Monique Malgat
    Jean-Pierre Mazat
    [J]. Molecular and Cellular Biochemistry, 1997, 174 : 149 - 156
  • [8] A non-parametric approach for linear system identification using principal component analysis
    Tan, M. H.
    Hammond, J. K.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (04) : 1576 - 1600
  • [9] Voltammetric identification of antiarrhythmic medicines using principal component analysis
    Sidel'nikov, A. V.
    Zil'berg, R. A.
    Yarkaeva, Yu. A.
    Maistrenko, V. N.
    Kraikin, V. A.
    [J]. JOURNAL OF ANALYTICAL CHEMISTRY, 2015, 70 (10) : 1261 - 1266
  • [10] MATLAB Implementation of Face Identification using Principal Component Analysis
    Mahmood, Nasrul Humaimi
    Ariffin, Ismail
    Omar, Camallil
    Jaafar, Nur Sufiah
    [J]. MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 5402 - 5408