Species-identification of wasps using principal component associative memories

被引:39
|
作者
Weeks, PJD
O'Neill, MA
Gaston, KJ
Gauld, ID
机构
[1] Hope Entomol Collect, Oxford OX1 3PW, England
[2] Nat Hist Museum, Dept Entomol, London SW7 5BD, England
[3] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England
关键词
principal components analysis; species-identification; taxonomy;
D O I
10.1016/S0262-8856(98)00161-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach to image-based insect specimen identification. exploiting the ability of principal component auto associative memories to form trainable classifiers, which may be used to identify unknown images. The system utilises the differences between a pair of reconstructed images produced when the unknown image is included in, and then excluded from the training set encoded by the auto associative memory. A non-parametric statistical correlation metric, Kendall's t. was used to correlate the reconstructed images. The approach has been applied to the species-identification of closely related parasitic wasps based upon their wing venation and pigmentation patterns. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:861 / 866
页数:6
相关论文
共 50 条
  • [31] Robust Speaker Identification Using Ensembles of Kernel Principal Component Analysis
    Yang, Il-Ho
    Kim, Min-Seok
    So, Byung-Min
    Kim, Myung-Jae
    Yu, Ha-Jin
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 71 - 78
  • [32] Internal Structure Identification of Random Process Using Principal Component Analysis
    Zhang, Mengqiu
    Kennedy, Rodney A.
    Abhayapala, Thushara D.
    Zhang, Wen
    2010 4TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2010,
  • [33] Design of Associative Memories by Using Machine Learning
    Citko, Wieslaw
    Sienko, Wieslaw
    PROCEEDINGS OF INDS '09: SECOND INTERNATIONAL WORKSHOP ON NONLINEAR DYNAMICS AND SYNCHRONIZATION 2009, 2009, 4 : 209 - 212
  • [34] A novel online structure damage identification using principal component analysis (PCA)
    Hong, Soonyoung
    Shen, M. -H. Herman
    Proceedings of the ASME Power Conference 2007, 2007, : 367 - 374
  • [35] Online identification of nonlinear system using reduced kernel principal component analysis
    Okba Taouali
    Ilyes Elaissi
    Hassani Messaoud
    Neural Computing and Applications, 2012, 21 : 161 - 169
  • [36] Identification of Linear Dynamic Systems using Dynamic Iterative Principal Component Analysis
    Maurya, Deepak
    Tangirala, Arun K.
    Narasimhan, Shankar
    IFAC PAPERSONLINE, 2016, 49 (07): : 1014 - 1019
  • [37] Acoustical source separation and identification using principal component analysis and correlation analysis
    Cheng, Wei
    Zhang, Zhousuo
    Zhang, Jie
    JOURNAL OF VIBROENGINEERING, 2015, 17 (04) : 1817 - 1827
  • [38] FAULT DETECTION AND IDENTIFICATION IN NPP INSTRUMENTS USING KERNEL PRINCIPAL COMPONENT ANALYSIS
    Ma, Jianping
    Jiang, Jin
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING 2010, VOL 1, 2011, : 765 - 771
  • [39] Online identification of nonlinear system using reduced kernel principal component analysis
    Taouali, Okba
    Elaissi, Ilyes
    Messaoud, Hassani
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (01): : 161 - 169
  • [40] Identification of morphofunctional traits in Mangalarga Marchador horse using principal component analysis
    Meira, C. T.
    Pereira, I. G.
    Farah, M. M.
    Pires, A. V.
    Garcia, D. A.
    Cruz, V. A. R.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2013, 65 (06) : 1843 - 1848