Requirements for fault-tolerant factoring on an atom-optics quantum computer

被引:57
|
作者
Devitt, Simon J. [1 ]
Stephens, Ashley M. [1 ]
Munro, William J. [1 ,2 ]
Nemoto, Kae [1 ]
机构
[1] Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
[2] NTT Corp, NTT Basic Res Labs, Atsugi, Kanagawa 2430198, Japan
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
SHORS ALGORITHM; QUBIT; ARCHITECTURE; CIRCUIT;
D O I
10.1038/ncomms3524
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Fault-tolerant quantum computation by anyons
    Kitaev, AY
    [J]. ANNALS OF PHYSICS, 2003, 303 (01) : 2 - 30
  • [32] Efficient fault-tolerant quantum computing
    Steane, AM
    [J]. NATURE, 1999, 399 (6732) : 124 - 126
  • [33] Fault-tolerant quantum error detection
    Linke, Norbert M.
    Gutierrez, Mauricio
    Landsman, Kevin A.
    Figgatt, Caroline
    Debnath, Shantanu
    Brown, Kenneth R.
    Monroe, Christopher
    [J]. SCIENCE ADVANCES, 2017, 3 (10):
  • [34] Fault-tolerant quantum data locking
    Huang, Zixin
    Kok, Pieter
    Lupo, Cosmo
    [J]. PHYSICAL REVIEW A, 2021, 103 (05)
  • [35] Fault-Tolerant Holonomic Quantum Computation
    Oreshkov, Ognyan
    Brun, Todd A.
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (07)
  • [36] Fault-tolerant quantum dynamical decoupling
    Khodjasteh, K
    Lidar, DA
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [37] An Introduction into Fault-tolerant Quantum Computing
    Paler, Alexandru
    Devitt, Simon J.
    [J]. 2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015,
  • [38] Efficient fault-tolerant quantum computing
    Andrew M. Steane
    [J]. Nature, 1999, 399 : 124 - 126
  • [39] Ultrafast fault-tolerant long-distance quantum communication with static linear optics
    Ewert, Fabian
    van Loock, Peter
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [40] Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays
    Wu, Yue
    Kolkowitz, Shimon
    Puri, Shruti
    Thompson, Jeff D.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)