Fault-tolerant quantum error detection

被引:115
|
作者
Linke, Norbert M. [1 ,2 ,3 ]
Gutierrez, Mauricio [4 ,5 ,6 ,7 ,9 ]
Landsman, Kevin A. [1 ,2 ,3 ]
Figgatt, Caroline [1 ,2 ,3 ]
Debnath, Shantanu [1 ,2 ,3 ,10 ]
Brown, Kenneth R. [4 ,5 ,6 ,7 ]
Monroe, Christopher [1 ,2 ,3 ,8 ]
机构
[1] Univ Maryland, Dept Phys, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, Joint Ctr Quantum Informat & Comp Sci, College Pk, MD 20742 USA
[3] NIST, College Pk, MD 20742 USA
[4] Georgia Inst Technol, Sch Chem, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Sch Biochem, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[8] IonQ Inc, College Pk, MD 20742 USA
[9] Swansea Univ, Coll Sci, Dept Phys, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
[10] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 10期
基金
美国国家科学基金会;
关键词
COMPUTER; STATE; CODES; QUBIT;
D O I
10.1126/sciadv.1701074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fault-tolerant detection of a quantum error
    Rosenblum, S.
    Reinhold, P.
    Mirrahimi, M.
    Jiang, Liang
    Frunzio, L.
    Schoelkopf, R. J.
    [J]. SCIENCE, 2018, 361 (6399) : 266 - 269
  • [2] QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING
    Gaitan, Frank
    Li, Ran
    [J]. DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 53 - +
  • [3] An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation
    Gottesman, Daniel
    [J]. QUANTUM INFORMATION SCIENCE AND ITS CONTRIBUTIONS TO MATHEMATICS, 2010, 68 : 13 - 58
  • [4] FAULT-TOLERANT QUANTUM ERROR CORRECTION CODE CONVERSION
    Hill, Charles D.
    Fowler, Austin G.
    Wang, David S.
    Hollenberg, Lloyd C. L.
    [J]. QUANTUM INFORMATION & COMPUTATION, 2013, 13 (5-6) : 439 - 451
  • [5] Fault-tolerant quantum error correction code conversion
    [J]. Hill, C. D., 1600, Rinton Press Inc. (13): : 5 - 6
  • [6] Message passing in fault-tolerant quantum error correction
    Evans, Zachary W. E.
    Stephens, Ashley M.
    [J]. PHYSICAL REVIEW A, 2008, 78 (06)
  • [7] Fault-tolerant error correction with efficient quantum codes
    DiVincenzo, DP
    Shor, PW
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (15) : 3260 - 3263
  • [8] Demonstration of Fault-Tolerant Steane Quantum Error Correction
    Postler, Lukas
    Butt, Friederike
    Pogorelov, Ivan
    Marciniak, Christian D.
    Heussen, Sascha
    Blatt, Rainer
    Schindler, Philipp
    Rispler, Manuel
    Mueller, Markus
    Monz, Thomas
    [J]. PRX QUANTUM, 2024, 5 (03):
  • [9] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE
    Aharonov, Dorit
    Ben-Or, Michael
    [J]. SIAM JOURNAL ON COMPUTING, 2008, 38 (04) : 1207 - 1282
  • [10] Fault-tolerant quantum error correction using error weight parities
    Tansuwannont, Theerapat
    Leung, Debbie
    [J]. PHYSICAL REVIEW A, 2021, 104 (04)