AIC model selection using Akaike weights

被引:1863
|
作者
Wagenmakers, EJ [1 ]
Farrell, S [1 ]
机构
[1] Northwestern Univ, Evanston, IL USA
关键词
D O I
10.3758/BF03206482
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
The Akaike information criterion (AIC; Akaike, 1973) is a popular method for comparing the adequacy of multiple, possibly nonnested models. Current practice in cognitive psychology is to accept a single model on the basis of only the “raw” AIC values, making it difficult to unambiguously interpret the observed AIC differences in terms of a continuous measure such as probability. Here we demonstrate that AIC values can be easily transformed to so-called Akaike weights (e.g., Akaike, 1978, 1979; Bozdogan, 1987; Burnham & Anderson, 2002), which can be directly interpreted as conditional probabilities for each model. We show by example how these Akaike weights can greatly facilitate the interpretation of the results of AIC model comparison procedures.
引用
收藏
页码:192 / 196
页数:5
相关论文
共 50 条
  • [41] SELECTION OF A MATHEMATICAL MODEL FOR THE KINETICS OF Haemophilus influenzae TYPE B USING AKAIKE'S INFORMATION CRITERION
    Cintra, F. de O.
    Takagi, M.
    [J]. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2018, 35 (04) : 1305 - 1314
  • [42] Model selection in dynamic contrast enhanced MRI: The Akaike Information Criterion
    Ingrisch, M.
    Sourbron, S.
    Reiser, M. F.
    Peller, M.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 356 - 358
  • [43] A bootstrap variant of AIC for state-space model selection
    Cavanaugh, JE
    Shumway, RH
    [J]. STATISTICA SINICA, 1997, 7 (02) : 473 - 496
  • [44] A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion
    Symonds, Matthew R. E.
    Moussalli, Adnan
    [J]. BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2011, 65 (01) : 13 - 21
  • [45] AIC MODEL SELECTION IN OVERDISPERSED CAPTURE-RECAPTURE DATA
    ANDERSON, DR
    BURNHAM, KP
    WHITE, GC
    [J]. ECOLOGY, 1994, 75 (06) : 1780 - 1793
  • [46] SELECTION OF WEIGHTS FOR WEIGHTED MODEL AVERAGING
    Garthwaite, Paul H.
    Mubwandarikwa, Emmanuel
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2010, 52 (04) : 363 - 382
  • [47] THE ESTIMATION OF SMOOTH OPERATION TIME UNTIL FAILURE WITH THE APPLICATION OF THE AKAIKE INFORMATION CRITERION (AIC)
    Kornacki, Andrzej
    Sokolowska, Ewa
    [J]. EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2010, (01): : 69 - 76
  • [48] Practical advice on variable selection and reporting using Akaike information criterion
    Sutherland, Chris
    Hare, Darragh
    Johnson, Paul J.
    Linden, Daniel W.
    Montgomery, Robert A.
    Droge, Egil
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2023, 290 (2007)
  • [49] Using input dependent weights for model combination and model selection with multiple sources of data
    Pan, We
    Xiao, Guanghua
    Huang, Xiaohong
    [J]. STATISTICA SINICA, 2006, 16 (02) : 523 - 540
  • [50] Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework
    Richards, Shane A.
    Whittingham, Mark J.
    Stephens, Philip A.
    [J]. BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY, 2011, 65 (01) : 77 - 89