Physisorbed Polymer-Tethered Lipid Bilayer with Lipopolymer Gradient

被引:10
|
作者
Lin, Yu-Hung [1 ]
Minner, Daniel E. [1 ,2 ]
Herring, Vincent L. [1 ]
Naumann, Christoph A. [1 ]
机构
[1] Indiana Univ Purdue Univ, Dept Chem & Chem Biol, Indianapolis, IN 46202 USA
[2] Indiana Univ Purdue Univ, Integrated Nanosyst Dev Inst, Indianapolis, IN 46202 USA
来源
MATERIALS | 2012年 / 5卷 / 11期
基金
美国国家科学基金会;
关键词
gradient bilayer; Langmuir-Blodgett transfer; lipopolymer; polymer-tethered lipid membrane; Epifluorescence; atomic force microscopy; buckling structure; SUPPORTED PHOSPHOLIPID-BILAYERS; MEMBRANE-PROTEINS; CELL RECEPTORS; ADHESION; MIXTURES; SUBSTRATE; SURFACE; ENERGY; FILMS;
D O I
10.3390/ma5112243
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Physisorbed polymer-tethered lipid bilayers consisting of phospholipids and lipopolymers represent an attractive planar model membrane platform, in which bilayer fluidity and membrane elastic properties can be regulated through lipopolymer molar concentration. Herein we report a method for the fabrication of such a planar model membrane system with a lateral gradient of lipopolymer density. In addition, a procedure is described, which leads to a sharp boundary between regions of low and high lipopolymer molar concentrations. Resulting gradients and sharp boundaries are visualized on the basis of membrane buckling structures at elevated lipopolymer concentrations using epifluorescence microscopy and atomic force microscopy. Furthermore, results from spot photobleaching experiments are presented, which provide insight into the lipid lateral fluidity in these model membrane architectures. The presented experimental data highlight a planar, solid-supported membrane characterized by fascinating length scale-dependent dynamics and elastic properties with remarkable parallels to those observed in cellular membranes.
引用
收藏
页码:2243 / 2257
页数:15
相关论文
共 50 条
  • [31] Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles
    Zhang, Yue
    Zhao, Hanying
    LANGMUIR, 2016, 32 (15) : 3567 - 3579
  • [32] Self-assembly of polymer-tethered nanorods
    Horsch, MA
    Zhang, ZL
    Glotzer, SC
    PHYSICAL REVIEW LETTERS, 2005, 95 (05)
  • [33] Ammonium binding resins: Polymer-tethered tetraphenylborate
    Cameron, NS
    Brown, GR
    Cameron, TS
    CHEMISTRY OF MATERIALS, 2002, 14 (04) : 1622 - 1629
  • [34] Photoelectrochemical Processes in Polymer-Tethered CdSe Nanocrystals
    Shallcross, R. Clayton
    D'Ambruoso, Gemma D.
    Pyun, Jeffrey
    Armstrong, Neal R.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (08) : 2622 - 2632
  • [35] Raft Recruitment Processes and Oligomerization State of Integrins Studied in Polymer-Tethered Single and Double Bilayer Systems
    Siegel, Amanda P.
    Kimble-Hill, Ann
    Jordan, Rainer
    Naumann, Christoph A.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 332 - 332
  • [36] Structure and dynamics of polymer-tethered phospholipid membranes.
    Frank, CW
    Naumann, C
    Shen, W
    Brooks, C
    Fuller, GG
    Knoll, W
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U673 - U673
  • [37] Confinement of Polymer-Tethered Gold Nanowires in Polymeric Colloids
    Xu, Jiangping
    Jiang, Wei
    MACROMOLECULES, 2014, 47 (07) : 2396 - 2403
  • [38] Interactions, Structure, and Dynamics of Polymer-Tethered Nanoparticle Blends
    Agrawal, Akanksha
    Wenning, Brandon M.
    Choudhury, Snehashis
    Archer, Lynden A.
    LANGMUIR, 2016, 32 (34) : 8698 - 8708
  • [39] Adsorption from Binary Solutions on the Polymer-Tethered Surfaces
    Borowko, M.
    Sokolowski, S.
    Staszewski, T.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (10): : 3115 - 3124
  • [40] Multiscale modeling and simulation of polymer-tethered silsesquioxane assemblies
    Chan, ER
    Zhang, X
    Lee, CY
    Neurock, M
    Striolo, A
    McCabe, C
    Cummings, PT
    Kieffer, J
    Glotzer, SC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1253 - U1254