Semantic Forward Propagation for Symbolic Regression

被引:6
|
作者
Szubert, Marcin [1 ]
Kodali, Anuradha [2 ,3 ]
Ganguly, Sangram [3 ,4 ]
Das, Kamalika [2 ,3 ]
Bongard, Josh C. [1 ]
机构
[1] Univ Vermont, Burlington, VT 05405 USA
[2] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Bay Area Environm Res Inst, Petaluma, CA 94952 USA
关键词
Genetic programming; Program semantics; Semantic backpropagation; Problem decomposition; Symbolic regression;
D O I
10.1007/978-3-319-45823-6_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a number of methods have been proposed that attempt to improve the performance of genetic programming by exploiting information about program semantics. One of the most important developments in this area is semantic backpropagation. The key idea of this method is to decompose a program into two parts-a subprogram and a context-and calculate the desired semantics of the subprogram that would make the entire program correct, assuming that the context remains unchanged. In this paper we introduce Forward Propagation Mutation, a novel operator that relies on the opposite assumption-instead of preserving the context, it retains the subprogram and attempts to place it in the semantically right context. We empirically compare the performance of semantic backpropagation and forward propagation operators on a set of symbolic regression benchmarks. The experimental results demonstrate that semantic forward propagation produces smaller programs that achieve significantly higher generalization performance.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 50 条
  • [31] Symbolic regression for better specification
    Tsionas, Mike G.
    Assaf, A. George
    INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT, 2020, 91
  • [32] Feature Standardisation in Symbolic Regression
    Owen, Caitlin A.
    Dick, Grant
    Whigham, Peter A.
    AI 2018: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11320 : 565 - 576
  • [33] Symbolic regression in multicollinearity problems
    Castillo, Flor A.
    Villa, Carlos M.
    GECCO 2005: Genetic and Evolutionary Computation Conference, Vols 1 and 2, 2005, : 2207 - 2208
  • [34] Symbolic-regression boosting
    Moshe Sipper
    Jason H. Moore
    Genetic Programming and Evolvable Machines, 2021, 22 : 357 - 381
  • [35] A Memetic Algorithm for Symbolic Regression
    Sun, Haoyuan
    Moscato, Pablo
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2167 - 2174
  • [36] Neural Symbolic Regression that Scales
    Biggio, Luca
    Bendinelli, Tommaso
    Neitz, Alexander
    Lucchi, Aurelien
    Parascandolo, Giambattista
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [37] Symbolic Regression on Network Properties
    Martens, Marcus
    Kuipers, Fernando
    Van Mieghem, Piet
    GENETIC PROGRAMMING, EUROGP 2017, 2017, 10196 : 131 - 146
  • [38] Symbolic regression in materials science
    Wang, Yiqun
    Wagner, Nicholas
    Rondinelli, James M.
    MRS COMMUNICATIONS, 2019, 9 (03) : 793 - 805
  • [39] A GRASP approach for Symbolic Regression
    Jovanovic, Raka
    Ashhab, Sahel
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1723 - 1728
  • [40] Symbolic linear regression with taxonomies
    Afonso, F
    Billard, L
    Diday, E
    CLASSIFICATION, CLUSTERING, AND DATA MINING APPLICATIONS, 2004, : 429 - 437