Semantic Forward Propagation for Symbolic Regression

被引:6
|
作者
Szubert, Marcin [1 ]
Kodali, Anuradha [2 ,3 ]
Ganguly, Sangram [3 ,4 ]
Das, Kamalika [2 ,3 ]
Bongard, Josh C. [1 ]
机构
[1] Univ Vermont, Burlington, VT 05405 USA
[2] Univ Calif Santa Cruz, Santa Cruz, CA 95064 USA
[3] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[4] Bay Area Environm Res Inst, Petaluma, CA 94952 USA
关键词
Genetic programming; Program semantics; Semantic backpropagation; Problem decomposition; Symbolic regression;
D O I
10.1007/978-3-319-45823-6_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, a number of methods have been proposed that attempt to improve the performance of genetic programming by exploiting information about program semantics. One of the most important developments in this area is semantic backpropagation. The key idea of this method is to decompose a program into two parts-a subprogram and a context-and calculate the desired semantics of the subprogram that would make the entire program correct, assuming that the context remains unchanged. In this paper we introduce Forward Propagation Mutation, a novel operator that relies on the opposite assumption-instead of preserving the context, it retains the subprogram and attempts to place it in the semantically right context. We empirically compare the performance of semantic backpropagation and forward propagation operators on a set of symbolic regression benchmarks. The experimental results demonstrate that semantic forward propagation produces smaller programs that achieve significantly higher generalization performance.
引用
收藏
页码:364 / 374
页数:11
相关论文
共 50 条
  • [21] A review of "Symbolic Regression"
    Cava, William G. La
    Kronberger, Gabriel
    Burlacu, Bogdan
    Kommenda, Michael
    Winkler, Stephan M.
    Affenzeller, Michael
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2025, 26 (01)
  • [22] Forward-Propagation Rule Based on Ridge Regression for Inverse Kinematics Problem
    Kinoshita, Koji
    Okimoto, Hiroshi
    Murakami, Kenji
    2008 PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-7, 2008, : 1020 - 1023
  • [23] SYMBOLIC REGRESSION WITH SAMPLING
    Kommenda, Michael
    Kronberger, Gabriel K.
    Affenzeller, Michael
    Winkler, Stephan M.
    Feilmayr, Christoph
    Wagner, Stefan
    22ND EUROPEAN MODELING AND SIMULATION SYMPOSIUM (EMSS 2010), 2010, : 13 - 18
  • [24] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [25] Geometric Semantic Crossover with an Angle-Aware Mating Scheme in Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Mei, Yi
    Zhang, Mengjie
    GENETIC PROGRAMMING, EUROGP 2017, 2017, 10196 : 229 - 245
  • [26] SYMBOLIC EXECUTION - A SEMANTIC APPROACH
    KNEUPER, R
    SCIENCE OF COMPUTER PROGRAMMING, 1991, 16 (03) : 207 - 249
  • [27] Smooth Symbolic Regression: Transformation of Symbolic Regression into a Real-Valued Optimization Problem
    Pitzer, Erik
    Kronberger, Gabriel
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 375 - 383
  • [28] Analyzing Forward Robustness of Feedforward Deep Neural Networks with LeakyReLU Activation Function Through Symbolic Propagation
    Masetti, Giulio
    Di Giandomenico, Felicita
    ECML PKDD 2020 WORKSHOPS, 2020, 1323 : 460 - 474
  • [29] Bloat and Generalisation in Symbolic Regression
    Dick, Grant
    SIMULATED EVOLUTION AND LEARNING (SEAL 2014), 2014, 8886 : 491 - 502
  • [30] Symbolic-regression boosting
    Sipper, Moshe
    Moore, Jason H.
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (03) : 357 - 381