Mesoscale diffusion magnetic resonance imaging of the ex vivo human hippocampus

被引:13
|
作者
Ly, Maria [1 ]
Foley, Lesley [2 ]
Manivannan, Ashwinee [3 ]
Hitchens, T. Kevin [2 ]
Richardson, R. Mark [4 ,5 ,6 ]
Modo, Michel [1 ,5 ,7 ]
机构
[1] Univ Pittsburgh, Dept Radiol, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA USA
[3] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA USA
[4] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, McGowan Inst Regenerat Med, 3025 East Carson St, Pittsburgh, PA 15203 USA
[6] Univ Pittsburgh, Inst Brain, Pittsburgh, PA USA
[7] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA USA
关键词
connectome; diffusion tensor imaging; epilepsy; ex vivo; hippocampus; mesoscale; tractography; TO-NOISE RATIO; GRADIENT DIRECTIONS; IN-VIVO; TIME-DEPENDENCE; B-VALUE; 7T MRI; TENSOR; TISSUE; BRAIN; SIGNAL;
D O I
10.1002/hbm.25119
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mesoscale diffusion magnetic resonance imaging (MRI) endeavors to bridge the gap between macroscopic white matter tractography and microscopic studies investigating the cytoarchitecture of human brain tissue. To ensure a robust measurement of diffusion at the mesoscale, acquisition parameters were arrayed to investigate their effects on scalar indices (mean, radial, axial diffusivity, and fractional anisotropy) and streamlines (i.e., graphical representation of axonal tracts) in hippocampal layers. A mesoscale resolution afforded segementation of the pyramidal cell layer (CA1-4), the dentate gyrus, as well as stratum moleculare, radiatum, and oriens. Using ex vivo samples, surgically excised from patients with intractable epilepsy (n= 3), we found that shorter diffusion times (23.7 ms) with a b-value of 4,000 s/mm(2)were advantageous at the mesoscale, providing a compromise between mean diffusivity and fractional anisotropy measurements. Spatial resolution and sample orientation exerted a major effect on tractography, whereas the number of diffusion gradient encoding directions minimally affected scalar indices and streamline density. A sample temperature of 15 degrees C provided a compromise between increasing signal-to-noise ratio and increasing the diffusion properties of the tissue. Optimization of the acquisition afforded a system's view of intra- and extra-hippocampal connections. Tractography reflected histological boundaries of hippocampal layers. Individual layer connectivity was visualized, as well as streamlines emanating from individual sub-fields. The perforant path, subiculum and angular bundle demonstrated extra-hippocampal connections. Histology of the samples confirmed individual cell layers corresponding to ROIs defined on MR images. We anticipate that this ex vivo mesoscale imaging will yield novel insights into human hippocampal connectivity.
引用
收藏
页码:4200 / 4218
页数:19
相关论文
共 50 条
  • [21] Reconstruction and visualization of fiber and Laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance Imaging (DTMRI) data
    Rohmer, Damien
    Sitek, Arkadiusz
    Gullberg, Grant T.
    INVESTIGATIVE RADIOLOGY, 2007, 42 (11) : 777 - 789
  • [22] Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques
    Meletta, Romana
    Borel, Nicole
    Stolzmann, Paul
    Astolfo, Alberto
    Klohs, Jan
    Stampanoni, Marco
    Rudin, Markus
    Schibli, Roger
    Kraemer, Stefanie D.
    Herde, Adrienne Mueller
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2015, 31 (07): : 1425 - 1434
  • [23] Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques
    Romana Meletta
    Nicole Borel
    Paul Stolzmann
    Alberto Astolfo
    Jan Klohs
    Marco Stampanoni
    Markus Rudin
    Roger Schibli
    Stefanie D. Krämer
    Adrienne Müller Herde
    The International Journal of Cardiovascular Imaging, 2015, 31 : 1425 - 1434
  • [24] In Vivo Magnetic Resonance Imaging of Human Knee with Metasurface
    Shchelokova, A. V.
    Slobozhanyuk, A. P.
    Saha, S.
    Sotiriou, I.
    Koutsoupidou, M.
    Palikaras, G.
    Kallos, E.
    Belov, P. A.
    Webb, A.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 3657 - 3660
  • [25] Magnetic Resonance Imaging of Human Intracortical Structure in vivo
    Damasio, H.
    Kuljis, R. O.
    Yuh, W.
    van Hoesen, G. W.
    Ehrhardt, J.
    CEREBRAL CORTEX, 1991, 1 (05) : 374 - 379
  • [26] Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms
    Lin, CP
    Wedeen, VJ
    Chen, JH
    Yao, C
    Tseng, WYI
    NEUROIMAGE, 2003, 19 (03) : 482 - 495
  • [27] EX VIVO AND IN VIVO MAGNETIC RESONANCE IMAGING OF CARTILAGE CANALS IN SWINE AT PREDILECTION SITES OF OSTEOCHONDROSIS
    Toth, F.
    Nissi, M. J.
    Zhang, J.
    Schmitter, S.
    Benson, M.
    Garwood, M.
    Hammer, B.
    Ellermann, J. M.
    Carlson, C. S.
    OSTEOARTHRITIS AND CARTILAGE, 2013, 21 : S109 - S110
  • [28] Magnetic resonance imaging as a tool for in vivo and ex vivo anatomical phenotyping in experimental genetic models
    Pitiot, Alain
    Pausova, Zdenka
    Prior, Malcolm
    Perrin, Jennifer
    Loyse, Naomi
    Paus, Tomas
    HUMAN BRAIN MAPPING, 2007, 28 (06) : 555 - 566
  • [29] Ex vivo magnetic resonance imaging of rat spinal cord at 9.4 T
    Bilgen, M
    Al-Hafez, B
    Malone, TM
    Smirnova, IV
    MAGNETIC RESONANCE IMAGING, 2005, 23 (04) : 601 - 605
  • [30] Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy
    M. Cova
    R. Toffanin
    F. Frezza
    M. Pozzi-Mucelli
    V. Mlynárik
    R. S. Pozzi-Mucelli
    F. Vittur
    L. Dalla-Palma
    European Radiology, 1998, 8 : 1130 - 1136