On the Diophantine equation 2m + nx2 = yn

被引:7
|
作者
Luca, Florian [2 ,3 ]
Soydan, Gokhan [1 ]
机构
[1] Isiklar Air Force High Sch, TR-16039 Bursa, Turkey
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[3] Univ Witwatersrand, John Knopfmacher Ctr Applicable Anal & Number The, ZA-2050 Po Wits, South Africa
关键词
Exponential Diophantine equations; Primitive divisors of Lehmer sequences;
D O I
10.1016/j.jnt.2012.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that the Diophantine equation 2(m) + nx(2) = y(n) in positive integers x, y, m, n has the only solution (x, y,m,n) = (21,11,3,3) with n > 1 and gcd(nx, y) = 1. In fact, for n = 3,15, we transform the above equation into several elliptic curves for which we determine all their {2}-integer points. For n not equal 3,15, we apply the result of Yu.F. Bilu, G. Hanrot and P.M. Voutier about primitive divisors of Lehmer sequences. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条