On the Diophantine equation 1k+2k +...+ xk = yn

被引:33
|
作者
Bennett, MA [1 ]
Gyory, K
Pintér, A
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Debrecen, Math Inst, H-4010 Debrecen, Hungary
关键词
Diophantine equations; Bernoulli polynomials;
D O I
10.1112/S0010437X04000508
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we resolve a conjecture of Schaffer on the solvability of Diophantine equations of the shape 1(k) + 2(k) +... + x(k) = y(n), for 1 less than or equal to k less than or equal to 11. Our method, which may, with a modicum of effort, be extended to higher values of k, combines a wide variety of techniques, classical and modern, in Diophantine analysis.
引用
收藏
页码:1417 / 1431
页数:15
相关论文
共 50 条
  • [1] On the equation 1k+2k + ... + xk=yn
    Györy, K
    Pintér, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 62 (3-4): : 403 - 414
  • [2] On the equation 1k+2k + ••• + xk = yn for fixed x
    Berczes, A.
    Hajdu, L.
    Miyazaki, T.
    Pink, I.
    JOURNAL OF NUMBER THEORY, 2016, 163 : 43 - 60
  • [3] On some generalizations of the diophantine equation s(1k+2k + ... + xk) + r = dyn
    Rakaczki, Csaba
    ACTA ARITHMETICA, 2012, 151 (02) : 201 - 216
  • [4] On the Diophantine equation (x-1)k + xk + (x+1)k = yn
    Zhang, Zhongfeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2014, 85 (1-2): : 93 - 100
  • [5] DIOPHANTINE EQUATION 1K+2K+...+XK+R(X)=YZ
    VOORHOEVE, M
    GYORY, K
    TIJDEMAN, R
    ACTA MATHEMATICA, 1979, 143 (1-2) : 1 - 8
  • [6] The diophantine equation x2+52k+1 = yn
    Abu Muriefah, FS
    Arif, SA
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (03): : 229 - 231
  • [7] On the diophantine equation x2+q2k+1=yn
    Arif, SA
    Abu Muriefah, FS
    JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 95 - 100
  • [8] THE DIOPHANTINE EQUATION X2+2K=YN
    COHN, JHE
    ARCHIV DER MATHEMATIK, 1992, 59 (04) : 341 - 344
  • [9] A note on the Diophantine equation (xk - 1)(yk - 1)2 = z k - 1
    Li, Yangcheng
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2024, 30 (04) : 825 - 831
  • [10] On a conjecture of Schaffer concerning the equation 1k + ... + xk = yn
    Hajdu, L.
    JOURNAL OF NUMBER THEORY, 2015, 155 : 129 - 138