A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions

被引:21
|
作者
Repin, S
Sauter, S
Smolianski, A
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Russian Acad Sci, VA Steklov Math Inst, St Petersburg 191011, Russia
关键词
mixed Dirichlet/Neumann boundary conditions; a posteriori error estimator; reliability; efficiency; local error distribution;
D O I
10.1016/S0377-0427(03)00491-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present work is devoted to the a posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. Using the duality technique we derive a reliable and efficient a posteriori error estimator that measures the error in the energy norm. The estimator can be used in assessing the error of any approximate solution which belongs to the Sobolev space H-1, independently of the discretization method chosen. Only two global constants appear in the definition of the estimator; both constants depend solely on the domain geometry, and the estimator is quite nonsensitive to the error in the constants evaluation. It is also shown how accurately the estimator captures the local error distribution, thus, creating a base for a justified adaptivity of an approximation. (C) 2003 Published by Elsevier B.V.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条
  • [21] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [22] ORTHOGONAL SPLINE COLLOCATION FOR POISSON'S EQUATION WITH NEUMANN BOUNDARY CONDITIONS
    Bialecki, Bernard
    Fisher, Nick
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2023, 20 (06) : 832 - 854
  • [23] A note on a posteriori error analysis for dual mixed methods with mixed boundary conditions
    Barrios, Tomas P.
    Bustinza, Rommel
    Campos, Camila
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (05) : 3897 - 3918
  • [24] Dirichlet and Neumann problems for Poisson equation in half lens
    N. Taghizadeh
    V. S. Mohammadi
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2017, 52 : 61 - 69
  • [25] Dirichlet and Neumann problems for Poisson equation in half lens
    Taghizadeh, N.
    Mohammadi, V. S.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2017, 52 (02): : 61 - 69
  • [26] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [27] Spectral problems with mixed Dirichlet-Neumann boundary conditions: Isospectrality and beyond
    Jakobson, Dmitry
    Levitin, Michael
    Nadirashvili, Nikolai
    Polterovich, Losif
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) : 141 - 155
  • [28] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [29] A Mat lab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions
    Reimer, Ashton S.
    Cheviakov, Alexei F.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 783 - 798
  • [30] A posteriori boundary element error estimation
    Jou, J
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 106 (01) : 1 - 19