The sylvester-chvatal theorem

被引:12
|
作者
Chen, XM [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08854 USA
关键词
Computational Mathematic; Euclidean Space; Present Article;
D O I
10.1007/s00454-005-1216-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Sylvester-Gallai theorem asserts that every finite set S of points in two-dimensional Euclidean space includes two points, a and b, such that either there is no other point in S on the line ab, or the line ab contains all the points in S. Chvatal extended the notion of lines to arbitrary metric spaces and made a conjecture that generalizes the Sylvester-Gallai theorem. In the present article we prove this conjecture.
引用
下载
收藏
页码:193 / 199
页数:7
相关论文
共 50 条
  • [21] A characterization of hypergraphs that achieve equality in the Chvatal-McDiarmid Theorem
    Henning, Michael A.
    Loewenstein, Christian
    DISCRETE MATHEMATICS, 2014, 323 : 69 - 75
  • [22] A GENERALIZATION OF THE BONDY-CHVATAL THEOREM ON THE K-CLOSURE
    ZHU, YJ
    TIAN, F
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (03) : 247 - 255
  • [23] A Sylvester-Gallai theorem for cubic curves
    Cohen, Alex
    de Zeeuw, Frank
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [24] The Sylvester-Gallai theorem, colourings and algebra
    Pretorius, Lou M.
    Swanepoel, Konrad J.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 385 - 399
  • [25] An Extension of Sylvester's Theorem on Arithmetic Progressions
    Munagi, Augustine O.
    de Vega, Francisco Javier
    SYMMETRY-BASEL, 2023, 15 (06):
  • [26] A Sylvester–Gallai Type Theorem for Abelian Groups
    F. K. Nilov
    A. A. Polyanskii
    Mathematical Notes, 2021, 110 : 110 - 117
  • [27] A constructive version of the Sylvester-Gallai theorem
    Mandelkern, M.
    ACTA MATHEMATICA HUNGARICA, 2016, 150 (01) : 121 - 130
  • [28] Radical Sylvester-Gallai Theorem for Cubics
    Oliveira, Rafael
    Sengupta, Akash Kumar
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 212 - 220
  • [29] Sylvester-Gallai theorem and metric betweenness
    Chvátal, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 175 - 195
  • [30] Generalisation of Sylvester's theorem of determinants.
    Fischer, E
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1909, 135 (1/4): : 306 - 318