A constructive version of the Sylvester-Gallai theorem

被引:0
|
作者
Mandelkern, M. [1 ]
机构
[1] New Mexico State Univ, Las Cruces, NM 88003 USA
关键词
Sylvester-Gallai theorem; constructive mathematics; PROOF;
D O I
10.1007/s10474-016-0624-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sylvester-Gallai Theorem, stated as a problem by James Joseph Sylvester in 1893, asserts that for any finite, noncollinear set of points on a plane, there exists a line passing through exactly two points of the set. First, it is shown that for the real plane the theorem is constructively invalid. Then, a well-known classical proof is examined from a constructive standpoint, locating the nonconstructivities. Finally, a constructive version of the theorem is established for the plane ; this reveals the hidden constructive content of the classical theorem. The constructive methods used are those proposed by Errett Bishop.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [1] A constructive version of the Sylvester–Gallai theorem
    M. Mandelkern
    Acta Mathematica Hungarica, 2016, 150 : 121 - 130
  • [2] On the Sylvester-Gallai theorem for conics
    Czaplinski, A.
    Dumnicki, M.
    Farnik, L.
    Gwozdziewicz, J.
    Lampa-Baczynska, M.
    Malara, Grzegorz
    Szemberg, T.
    Szpond, J.
    Tutaj-Gasinska, H.
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2016, 136 : 191 - 203
  • [3] A Sylvester-Gallai theorem for cubic curves
    Cohen, Alex
    de Zeeuw, Frank
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [4] Sylvester-Gallai theorem and metric betweenness
    Chvátal, V
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 31 (02) : 175 - 195
  • [5] A Reverse Analysis of the Sylvester-Gallai Theorem
    Pambuccian, Victor
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2009, 50 (03) : 245 - 260
  • [6] Radical Sylvester-Gallai Theorem for Cubics
    Oliveira, Rafael
    Sengupta, Akash Kumar
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 212 - 220
  • [7] The Sylvester-Gallai theorem, colourings and algebra
    Pretorius, Lou M.
    Swanepoel, Konrad J.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 385 - 399
  • [8] A Sylvester-Gallai Type Theorem for Abelian Groups
    Nilov, F. K.
    Polyanskii, A. A.
    MATHEMATICAL NOTES, 2021, 110 (1-2) : 110 - 117
  • [9] Sylvester-Gallai for Arrangements of Subspaces
    Dvir, Zeev
    Hu, Guangda
    DISCRETE & COMPUTATIONAL GEOMETRY, 2016, 56 (04) : 940 - 965
  • [10] ON REPRESENTING SYLVESTER-GALLAI DESIGNS
    BOROS, E
    FUREDI, Z
    KELLY, LM
    DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (04) : 345 - 348