Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems
被引:0
|
作者:
Argyros, Ioannis K.
论文数: 0引用数: 0
h-index: 0
机构:
Cameron Univ, Dept Math Sci, Lawton, OK 73505 USACameron Univ, Dept Math Sci, Lawton, OK 73505 USA
Argyros, Ioannis K.
[1
]
Cho, Yeol Je
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South KoreaCameron Univ, Dept Math Sci, Lawton, OK 73505 USA
Cho, Yeol Je
[2
,3
]
George, Santhosh
论文数: 0引用数: 0
h-index: 0
机构:
Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 757025, IndiaCameron Univ, Dept Math Sci, Lawton, OK 73505 USA
George, Santhosh
[4
]
Xiao, Yi-bin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaCameron Univ, Dept Math Sci, Lawton, OK 73505 USA
Xiao, Yi-bin
[2
]
机构:
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[4] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 757025, India
We expand the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of the nonlinear ill-posed problem presented in Jin and Hou (Numer Math 83:139-159, 1999) by weakening the conditions needed in Jin and Hou [13]. Using a center-type Lipschitz condition instead of a Lipschitz-type condition used in Jin and Hou [13], Scherzer et al. (SIAM J Numer Anal 30:1796-1838, 1993), we obtain a tighter convergence analysis. Numerical examples are presented to show that our results apply but earlier ones do not apply to solve equations.