Expanding the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of nonlinear ill-posed problems

被引:0
|
作者
Argyros, Ioannis K. [1 ]
Cho, Yeol Je [2 ,3 ]
George, Santhosh [4 ]
Xiao, Yi-bin [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[3] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
[4] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 757025, India
基金
中国国家自然科学基金;
关键词
Nonlinear ill-posed problems; Tikhonov regularization; Discrepancy principle;
D O I
10.1007/s13398-019-00657-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We expand the applicability of an a posteriori parameter choice strategy for Tikhonov regularization of the nonlinear ill-posed problem presented in Jin and Hou (Numer Math 83:139-159, 1999) by weakening the conditions needed in Jin and Hou [13]. Using a center-type Lipschitz condition instead of a Lipschitz-type condition used in Jin and Hou [13], Scherzer et al. (SIAM J Numer Anal 30:1796-1838, 1993), we obtain a tighter convergence analysis. Numerical examples are presented to show that our results apply but earlier ones do not apply to solve equations.
引用
收藏
页码:2813 / 2826
页数:14
相关论文
共 50 条
  • [21] A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level
    Haemarik, Uno
    Palm, Reimo
    Raus, Toomas
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (08) : 2146 - 2157
  • [22] OPTIMAL A POSTERIORI PARAMETER CHOICE FOR TIKHONOV REGULARIZATION FOR SOLVING NONLINEAR III-POSED PROBLEMS
    SCHERZER, O
    ENGL, HW
    KUNISCH, K
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (06) : 1796 - 1838
  • [23] LOGARITHMIC CONVERGENCE RATES OF TIKHONOV REGULARIZATION FOR NONLINEAR ILL-POSED PROBLEMS
    Yang, Xiao-Mei
    Deng, Zhi-Liang
    2012 INTERNATIONAL CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (LCWAMTIP), 2012, : 359 - 362
  • [24] MODIFIED TIKHONOV REGULARIZATION FOR NONLINEAR ILL-POSED PROBLEMS IN BANACH SPECES
    Neubauer, Andreas
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2010, 22 (02) : 341 - 351
  • [25] A Dynamical Tikhonov Regularization Method for Solving Nonlinear Ill-Posed Problems
    Liu, Chein-Shan
    Kuo, Chung-Lun
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 76 (02): : 109 - 132
  • [26] On Minimization Strategies for Choice of the Regularization Parameter in Ill-Posed Problems
    Haemarik, U.
    Palm, R.
    Raus, T.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) : 924 - 950
  • [27] Comparing parameter choice methods for regularization of ill-posed problems
    Bauer, Frank
    Lukas, Mark A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (09) : 1795 - 1841
  • [28] The index function and Tikhonov regularization for ill-posed problems*
    Cheng, Jin
    Hofmann, Bernd
    Lu, Shuai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 265 : 110 - 119
  • [29] Some tendencies in the Tikhonov regularization of ill-posed problems
    Institute of Mathematics and Mechanics, Russian Academy of Sciences, Ural Division, S. Kovalevskoj str. 16, Ekaterinburg, Russia
    J Inverse Ill Posed Probl, 2006, 8 (813-840):
  • [30] A New Parameter Choice Strategy for Lavrentiev Regularization Method for Nonlinear Ill-Posed Equations
    George, Santhosh
    Padikkal, Jidesh
    Remesh, Krishnendu
    Argyros, Ioannis K.
    MATHEMATICS, 2022, 10 (18)