Remaining useful life prediction of lithium-ion battery with unscented particle filter technique

被引:407
|
作者
Miao, Qiang [1 ]
Xie, Lei [1 ]
Cui, Hengjuan [1 ]
Liang, Wei [1 ]
Pecht, Michael [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech Elect & Ind Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Maryland, CALCE, College Pk, MD 20742 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
STATE-OF-CHARGE; MANAGEMENT-SYSTEMS; HEALTH; PROGNOSTICS;
D O I
10.1016/j.microrel.2012.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate prediction of the remaining useful life of a faulty component is important to the prognosis and health management of a system. It gives operators information about when the component should be replaced. In recent years, a lot of research has been conducted on battery reliability and prognosis, especially the remaining useful life prediction of the lithium-ion batteries. Particle filter (PF) is an effective method for sequential signal processing. It has been used in many areas, including computer vision, target tracking, and robotics. However, the accuracy of the PF is not high. This paper introduces an improved PF algorithm-unscented particle filter (UPF) into the battery remaining useful life prediction. First, PF algorithm and UPF algorithm are described separately. Then, a degradation model is built based on the understanding of lithium-ion batteries. Finally, the prediction results can be obtained using the degradation model and the UPF algorithms. According to the analysis results, it can be seen that UPF can predict the actual RUL with an error less than 5%. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:805 / 810
页数:6
相关论文
共 50 条
  • [41] Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter
    Dong, Hancheng
    Jin, Xiaoning
    Lou, Yangbing
    Wang, Changhong
    JOURNAL OF POWER SOURCES, 2014, 271 : 114 - 123
  • [42] A novel remaining useful life prediction framework for lithium-ion battery using grey model and particle filtering
    Chen, Lin
    Wang, Huimin
    Chen, Jing
    An, Jingjing
    Ji, Bing
    Lyu, Zhiqiang
    Cao, Wenping
    Pan, Haihong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7435 - 7449
  • [43] A novel fusion prognostic approach for the prediction of the remaining useful life of a lithium-ion battery
    Mei, Xiaoyang
    Fang, Huajing
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 5801 - 5805
  • [44] Prediction for the Remaining Useful Life of Lithium-ion Battery Based on PCA-NARX
    Pang X.-Q.
    Wang Z.-Q.
    Zeng J.-C.
    Jia J.-F.
    Shi Y.-H.
    Wen J.
    Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2019, 39 (04): : 406 - 412
  • [45] Lithium-ion battery remaining useful life prediction based on sequential Bayesian updating
    Zhao, Fei
    Guo, Ming
    Liu, Xuejuan
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (02): : 635 - 642
  • [46] Lithium-ion Battery Remaining Useful Life Prediction Under Grey Theory Framework
    Zhou, Zhenwei
    Huang, Yun
    Lu, Yudong
    Shi, Zhengyu
    Zhu, Liangbiao
    Wu, Jiliang
    Li, Hui
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 297 - 300
  • [47] Remaining Useful Life Prediction of Lithium-ion Battery Based on Discrete Wavelet Transform
    Wang, Yujie
    Pan, Rui
    Yang, Duo
    Tang, Xiaopeng
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2053 - 2058
  • [48] Lithium-ion battery remaining useful life prediction based on GRU-RNN
    Song, Yuchen
    Li, Lyu
    Peng, Yu
    Liu, Datong
    12TH INTERNATIONAL CONFERENCE ON RELIABILITY, MAINTAINABILITY, AND SAFETY (ICRMS 2018), 2018, : 317 - 322
  • [49] Remaining useful life prediction of lithium-ion battery using a novel health indicator
    Wang, Ranran
    Feng, Hailin
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2021, 37 (03) : 1232 - 1243
  • [50] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    APPLIED ENERGY, 2014, 118 : 114 - 123