Remaining useful life prediction of lithium-ion battery with unscented particle filter technique

被引:407
|
作者
Miao, Qiang [1 ]
Xie, Lei [1 ]
Cui, Hengjuan [1 ]
Liang, Wei [1 ]
Pecht, Michael [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech Elect & Ind Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Maryland, CALCE, College Pk, MD 20742 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
STATE-OF-CHARGE; MANAGEMENT-SYSTEMS; HEALTH; PROGNOSTICS;
D O I
10.1016/j.microrel.2012.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate prediction of the remaining useful life of a faulty component is important to the prognosis and health management of a system. It gives operators information about when the component should be replaced. In recent years, a lot of research has been conducted on battery reliability and prognosis, especially the remaining useful life prediction of the lithium-ion batteries. Particle filter (PF) is an effective method for sequential signal processing. It has been used in many areas, including computer vision, target tracking, and robotics. However, the accuracy of the PF is not high. This paper introduces an improved PF algorithm-unscented particle filter (UPF) into the battery remaining useful life prediction. First, PF algorithm and UPF algorithm are described separately. Then, a degradation model is built based on the understanding of lithium-ion batteries. Finally, the prediction results can be obtained using the degradation model and the UPF algorithms. According to the analysis results, it can be seen that UPF can predict the actual RUL with an error less than 5%. (C) 2012 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:805 / 810
页数:6
相关论文
共 50 条
  • [21] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
    Zhang, Lijun
    Mu, Zhongqiang
    Sun, Changyan
    IEEE ACCESS, 2018, 6 : 17729 - 17740
  • [22] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Neural Network and Adaptive Unscented Kalman Filter
    Wu, Lingtao
    Guo, Wenhao
    Tang, Yuben
    Sun, Youming
    Qin, Tuanfa
    ELECTRONICS, 2024, 13 (13)
  • [23] Remaining useful life prediction for lithium-ion batteries with an improved grey particle filter model
    Xu, Zhicun
    Xie, Naiming
    Li, Kailing
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [24] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Spherical Cubature Particle Filter
    Wang, Dong
    Yang, Fangfang
    Tsui, Kwok-Leung
    Zhou, Qiang
    Bae, Suk Joo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2016, 65 (06) : 1282 - 1291
  • [25] Remaining useful life prediction for lithium-ion battery by combining an improved particle filter with sliding-window gray model
    Chen, Lin
    An, Jingjing
    Wang, Huimin
    Zhang, Mo
    Pan, Haihong
    ENERGY REPORTS, 2020, 6 : 2086 - 2093
  • [26] A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter
    Mo, Baohua
    Yu, Jingsong
    Tang, Diyin
    Liu, Hao
    Yu, Jingsong
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [27] An online unscented Kalman filter remaining useful life prediction method applied to second-life lithium-ion batteries
    Thomas S. N. Nunes
    Jonathan J. P. Moura
    Oclair G. Prado
    Marcelo M. Camboim
    Maria de Fatima N. Rosolem
    Raul F. Beck
    Camila Omae
    Hongwu Ding
    Electrical Engineering, 2023, 105 : 3481 - 3492
  • [28] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    SUSTAINABILITY, 2023, 15 (07)
  • [29] Remaining useful life Prediction for lithium-ion battery based on CEEMDAN and SVR
    Shi, Yuanhao
    Yang, Yanru
    Wen, Jie
    Cui, Fangshu
    Wang, Jingcheng
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 888 - 893
  • [30] A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery
    Chang, Yang
    Fang, Huajing
    Zhang, Yong
    APPLIED ENERGY, 2017, 206 : 1564 - 1578