An efficient tool for discovering simple combinatorial patterns from large text databases

被引:0
|
作者
Arimura, H
Wataki, A
Fujino, R
Shimozono, S
Arikawa, S
机构
[1] Kyushu Univ, Dept Informat, Fukuoka 8128581, Japan
[2] Kyushu Inst Technol, Dept Artificial Intelligence, Iizuka, Fukuoka 8208502, Japan
来源
DISCOVERY SCIENCE | 1998年 / 1532卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this poster, we present demonstration of a prototype system for efficient discovery of combinatorial patterns, called proximity word-association patterns, from a collection of texts. The algorithm computes the best k-proximity d-word patterns in almost linear expected time in the total input length n, which is drastically faster than a straightforward algorithm of O(n(2d+l)) time complexity.
引用
收藏
页码:393 / 394
页数:2
相关论文
共 50 条
  • [21] EFFICIENT MINING OF CLOSED TREE PATTERNS FROM LARGE TREE DATABASES WITH SUBTREE CONSTRAINT
    Viet Anh Nguyen
    Doi, Koichiro
    Yamamoto, Akihiro
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2012, 21 (06)
  • [22] Efficient Discovery of Partial Periodic Patterns in Large Temporal Databases
    Kiran, Rage Uday
    Veena, Pamalla
    Ravikumar, Penugonda
    Saideep, Chennupati
    Zettsu, Koji
    Shang, Haichuan
    Toyoda, Masashi
    Kitsuregawa, Masaru
    Reddy, P. Krishna
    [J]. ELECTRONICS, 2022, 11 (10)
  • [23] Efficient Graph-Based Algorithms for Discovering and Maintaining Association Rules in Large Databases
    Guanling Lee
    K. L. Lee
    Arbee L. P. Chen
    [J]. Knowledge and Information Systems, 2001, 3 (3) : 338 - 355
  • [24] Discovering Patterns from Large and Dynamic Sequential Data
    Wang K.
    [J]. Journal of Intelligent Information Systems, 1997, 9 (1) : 33 - 56
  • [25] Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases
    Likhitha, Palla
    Ravikumar, Penugonda
    Kiran, Rage Uday
    Watanobe, Yutaka
    [J]. BIG DATA ANALYTICS, BDA 2022, 2022, 13773 : 200 - 210
  • [26] Discovering sequential patterns from non-uniform databases (extended abstract)
    Dang, D
    Wang, XS
    [J]. WEB-AGE INFORMATION MANAGEMENT, PROCEEDINGS, 2000, 1846 : 139 - 144
  • [27] Negative Itemset Tree for Discovering Rare Patterns with Periodicity from Static Databases
    Jyothi Upadhya, K.
    Bolisetty, Thanishka
    Rao, B. Dinesh
    Geetha, M.
    [J]. Engineering Letters, 2023, 31 (03) : 882 - 895
  • [28] Discovering frequent structured patterns from string databases: An application to biological sequences
    Palopoli, L
    Terracina, G
    [J]. DISCOVERY SCIENCE, PROCEEDINGS, 2002, 2534 : 34 - 46
  • [29] Efficient mining for structurally diverse subgraph patterns in large molecular databases
    Maunz, Andreas
    Helma, Christoph
    Kramer, Stefan
    [J]. MACHINE LEARNING, 2011, 83 (02) : 193 - 218
  • [30] An Efficient Algorithm for Mining Maximal Frequent Sequential Patterns in Large Databases
    Su, Qiu-bin
    Lu, Lu
    Cheng, Bin
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMMUNICATION, NETWORK AND ARTIFICIAL INTELLIGENCE (CNAI 2018), 2018, : 404 - 410