Discovering Top-k Periodic-Frequent Patterns in Very Large Temporal Databases

被引:3
|
作者
Likhitha, Palla [1 ]
Ravikumar, Penugonda [1 ]
Kiran, Rage Uday [1 ]
Watanobe, Yutaka [1 ]
机构
[1] Univ Aizu, Aizu Wakamatsu, Fukushima, Japan
来源
BIG DATA ANALYTICS, BDA 2022 | 2022年 / 13773卷
关键词
Data mining; Pattern mining; Temporal databases;
D O I
10.1007/978-3-031-24094-2_14
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Discovering periodic-frequent patterns in temporal databases is a challenging data mining problem with abundant applications. It involves discovering all patterns in a database that satisfy the user-specified minimum support (minSup) and maximum periodicity (maxPer) constraints. MinSup controls the minimum number of transactions in which a pattern must appear in a database. MaxPer controls the maximum time interval within which a pattern must reappear in the database. Setting an appropriate minSup and maxPer values for any given database is an open research problem. This paper addresses this open problem by proposing a solution to discover top-k periodic-frequent patterns in a temporal database. Top-k periodic-frequent patterns represent a total of k periodic-frequent patterns with the lowest periodicity value in a database. An efficient depth-first search algorithm, called Top-k Periodic-Frequent Pattern Miner (k-PFPMiner), which takes only k threshold as an input was presented to find all desired patterns in a database. Experimental results on synthetic and real-world databases demonstrate that our algorithm is memory and runtime efficient and highly scalable.
引用
收藏
页码:200 / 210
页数:11
相关论文
共 50 条
  • [1] Discovering Maximal Periodic-Frequent Patterns in Very Large Temporal Databases
    Kiran, R. Uday
    Watanobe, Yutaka
    Chaudhury, Bhaskar
    Zettsu, Koji
    Toyoda, Masashi
    Kitsuregawa, Masaru
    [J]. 2020 IEEE 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2020), 2020, : 11 - 20
  • [2] Discovering Closed Periodic-Frequent Patterns in Very Large Temporal Databases
    Likhitha, P.
    Ravikumar, P.
    Kiran, R. Uday
    Hayamizu, Yuto
    Goda, Kazuo
    Toyoda, Masashi
    Zettsu, Koji
    Shrivastava, Sourabh
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4700 - 4709
  • [3] Discovering Fuzzy Periodic-Frequent Patterns in Quantitative Temporal Databases
    Kiran, R. Uday
    Saideep, C.
    Ravikumar, Penugonda
    Zettsu, Koji
    Toyoda, Masashi
    Kitsuregawa, Masaru
    Reddy, P. Krishna
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [4] Discovering Periodic-Frequent Patterns in Transactional Databases
    Tanbeer, Syed Khairuzzaman
    Ahmed, Chowdhury Farhan
    Jeong, Byeong-Soo
    Lee, Young-Hoo
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 242 - 253
  • [5] A fundamental approach to discover closed periodic-frequent patterns in very large temporal databases
    Pamalla, Veena
    Rage, Uday Kiran
    Penugonda, Ravikumar
    Palla, Likhitha
    Hayamizu, Yuto
    Goda, Kazuo
    Toyoda, Masashi
    Zettsu, Koji
    Sourabh, Shrivastava
    [J]. APPLIED INTELLIGENCE, 2023, 53 (22) : 27344 - 27373
  • [6] Efficient discovery of periodic-frequent patterns in very large databases
    Kiran, R. Uday
    Kitsuregawa, Masaru
    Reddy, P. Krishna
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2016, 112 : 110 - 121
  • [7] A fundamental approach to discover closed periodic-frequent patterns in very large temporal databases
    Veena Pamalla
    Uday Kiran Rage
    Ravikumar Penugonda
    Likhitha Palla
    Yuto Hayamizu
    Kazuo Goda
    Masashi Toyoda
    Koji Zettsu
    Shrivastava Sourabh
    [J]. Applied Intelligence, 2023, 53 : 27344 - 27373
  • [8] k-PFPMiner: Top-k Periodic Frequent Patterns in Big Temporal Databases
    Likhitha, Palla
    Ravikumar, Penugonda
    Saxena, Deepika
    Kiran, Rage Uday
    Watanobe, Yutaka
    [J]. IEEE ACCESS, 2023, 11 : 119033 - 119044
  • [9] Mining Top-K Periodic-Frequent Pattern from Transactional Databases without Support Threshold
    Amphawan, Komate
    Lenca, Philippe
    Surarerks, Athasit
    [J]. ADVANCES IN INFORMATION TECHNOLOGY, PROCEEDINGS, 2009, 55 : 18 - +
  • [10] Efficient Discovery of Partial Periodic-Frequent Patterns in Temporal Databases
    Nakamura, So
    Kiran, R. Uday
    Likhitha, P.
    Ravikumar, P.
    Watanobe, Yutaka
    Dao, Minh Son
    Zettsu, Koji
    Toyoda, Masashi
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2021, PT I, 2021, 12923 : 221 - 227