Multi-class motor imagery EEG decoding for brain-computer interfaces

被引:94
|
作者
Wang, Deng [1 ,2 ,3 ]
Miao, Duoqian [1 ,2 ]
Blohm, Gunnar [3 ,4 ]
机构
[1] Tongji Univ, Dept Comp Sci & Technol, Shanghai 201804, Peoples R China
[2] Minist Educ, Key Lab Embedded Syst & Serv Comp, Shanghai, Peoples R China
[3] Queens Univ, Ctr Neurosci Studies, Kingston, ON, Canada
[4] Canadian Act & Percept Network, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金; 加拿大创新基金会;
关键词
electroencephalogram; brain-computer interface; multi-class motor imagery; artifact processing; EEG channel selection; APPROXIMATE ENTROPY; AUTOMATIC REMOVAL; EOG ARTIFACTS; EYE-MOVEMENT; SYNCHRONIZATION; ALGORITHMS;
D O I
10.3389/fnins.2012.00151
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find noncontiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Adaptation in Motor Imagery Brain-Computer Interfaces and its Implication in Rehabilitation
    Guan, Cuntai
    2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,
  • [42] Transfer learning for motor imagery based brain-computer interfaces: A tutorial
    Wu, Dongrui
    Jiang, Xue
    Peng, Ruimin
    NEURAL NETWORKS, 2022, 153 : 235 - 253
  • [43] Exploring the Visual Guidance of Motor Imagery in Sustainable Brain-Computer Interfaces
    Yang, Cheng
    Kong, Lei
    Zhang, Zhichao
    Tao, Ye
    Chen, Xiaoyu
    SUSTAINABILITY, 2022, 14 (21)
  • [44] Review of public motor imagery and execution datasets in brain-computer interfaces
    Gwon, Daeun
    Won, Kyungho
    Song, Minseok
    Nam, Chang S.
    Jun, Sung Chan
    Ahn, Minkyu
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [45] An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces
    Papadopoulos, Sotirios
    Bonaiuto, James
    Mattout, Jeremie
    FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [46] Deep Learning Based Inter-subject Continuous Decoding of Motor Imagery for Practical Brain-Computer Interfaces
    Roy, Sujit
    Chowdhury, Anirban
    McCreadie, Karl
    Prasad, Girijesh
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [47] Subject-oriented training for motor imagery brain-computer interfaces
    Perdikis, Serafeim
    Leeb, Robet
    Millan, Jose del R.
    2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, : 1259 - 1262
  • [48] Phase-based features for Motor Imagery Brain-Computer Interfaces
    Hamner, Benjamin
    Leeb, Robert
    Tavella, Michele
    Millan, Jose del R.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 2578 - 2581
  • [49] A correntropy-based classifier for motor imagery brain-computer interfaces
    Suarez Uribe, Luisa Fernanda
    Stefano Filho, Carlos Alberto
    de Oliveira, Vinicius Alves
    da Silva Costa, Thiago Bulhoes
    Rodrigues, Paula Gabrielly
    Soriano, Diogo Coutinho
    Boccato, Levy
    Castellano, Gabriela
    Attux, Romis
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2019, 5 (06):
  • [50] Decoding EEG rhythms offline and online during motor imagery for standing and sitting based on a brain-computer interface
    Triana-Guzman, Nayid
    Orjuela-Canon, Alvaro D.
    Jutinico, Andres L.
    Mendoza-Montoya, Omar
    Antelis, Javier M.
    FRONTIERS IN NEUROINFORMATICS, 2022, 16