Multiple Sclerosis Biomarker Discovery via Bayesian Feature Selection

被引:7
|
作者
Pour, Ali Foroughi [1 ]
Dalton, Lori A. [1 ]
机构
[1] Ohio State Univ, 2015 Neil Ave, Columbus, OH 43210 USA
关键词
Feature Selection; Biomarker Discovery; Multiple Sclerosis;
D O I
10.1145/2975167.2985680
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent work proposes a hierarchical Bayesian framework for feature selection, where a prior describes the identity of each feature set and the underlying distribution parameters. Assuming jointly Gaussian features, a posterior is found in closed form, and an approximation is presented to develop fast suboptimal algorithms. Applying this method to multiple sclerosis data we find highly ranked genes and pathways suggested to be involved in multiple sclerosis.
引用
收藏
页码:540 / 541
页数:2
相关论文
共 50 条
  • [41] Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data
    Grissa, Dhouha
    Petera, Melanie
    Brandolini, Marion
    Napoli, Amedeo
    Comte, Blandine
    Pujos-Guillot, Estelle
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2016, 3
  • [42] A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies
    Tang, Jing
    Wang, Yunxia
    Fu, Jianbo
    Zhou, Ying
    Luo, Yongchao
    Zhang, Ying
    Li, Bo
    Yang, Qingxia
    Xue, Weiwei
    Lou, Yan
    Qiu, Yunqing
    Zhu, Feng
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1378 - 1390
  • [43] Optimizing hybrid ensemble feature selection strategies for transcriptomic biomarker discovery in complex diseases
    Claude, Elsa
    Leclercq, Mickael
    Thebault, Patricia
    Droit, Arnaud
    Uricaru, Raluca
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (03)
  • [44] sEnhanced Feature Selection for Biomarker Discovery in LC-MS Data using GP
    Ahmed, Soha
    Zhang, Mengjie
    Peng, Lifeng
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 584 - 591
  • [45] Automated feature discovery via sentence selection and source code summarization
    McBurney, Paul W.
    Liu, Cheng
    McMillan, Collin
    JOURNAL OF SOFTWARE-EVOLUTION AND PROCESS, 2016, 28 (02) : 120 - 145
  • [46] Bayesian Feature Discovery for Predictive Maintenance
    Dib, Amir
    Truong, Charles
    Oudre, Laurent
    Mougeot, Mathilde
    Vayatis, Nicolas
    Nonne, Heloise
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1421 - 1425
  • [47] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Tang, Chang
    Zheng, Xiao
    Zhang, Wei
    Liu, Xinwang
    Zhu, Xinzhong
    Zhu, En
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (05)
  • [48] Unsupervised feature selection via multiple graph fusion and feature weight learning
    Chang TANG
    Xiao ZHENG
    Wei ZHANG
    Xinwang LIU
    Xinzhong ZHU
    En ZHU
    ScienceChina(InformationSciences), 2023, 66 (05) : 56 - 72
  • [49] Early diagnosis and biomarker discovery from mass spectral profiles: application to multiple sclerosis
    Rajalahti, Tarja
    Arneberg, Reider
    Berven, Frode S.
    Kroksveen, Ann C.
    Berle, Magnus
    Myhr, Kjell-Morten
    Vedeler, Christian A.
    Ulvik, Rune J.
    Kvalheim, Olav M.
    MULTIPLE SCLEROSIS, 2008, 14 : S285 - S285
  • [50] Data integration and systems biology approaches for biomarker discovery: Challenges and opportunities for multiple sclerosis
    Villoslada, Pablo
    Baranzini, Sergio
    JOURNAL OF NEUROIMMUNOLOGY, 2012, 248 (1-2) : 58 - 65