Multiple Sclerosis Biomarker Discovery via Bayesian Feature Selection

被引:7
|
作者
Pour, Ali Foroughi [1 ]
Dalton, Lori A. [1 ]
机构
[1] Ohio State Univ, 2015 Neil Ave, Columbus, OH 43210 USA
关键词
Feature Selection; Biomarker Discovery; Multiple Sclerosis;
D O I
10.1145/2975167.2985680
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent work proposes a hierarchical Bayesian framework for feature selection, where a prior describes the identity of each feature set and the underlying distribution parameters. Assuming jointly Gaussian features, a posterior is found in closed form, and an approximation is presented to develop fast suboptimal algorithms. Applying this method to multiple sclerosis data we find highly ranked genes and pathways suggested to be involved in multiple sclerosis.
引用
收藏
页码:540 / 541
页数:2
相关论文
共 50 条
  • [21] Application of quantitative proteomics technologies to the biomarker discovery pipeline for multiple sclerosis
    Dagley, Laura F.
    Emili, Andrew
    Purcell, Anthony W.
    PROTEOMICS CLINICAL APPLICATIONS, 2013, 7 (1-2) : 91 - 108
  • [22] Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis
    Huizar, Carol Chase
    Raphael, Itay
    Forsthuber, Thomas G.
    CELLULAR IMMUNOLOGY, 2020, 358
  • [23] Biomarker discovery in tears of multiple sclerosis patients: a new vision in medicine?
    Dor, M.
    Wolfender, J. -L.
    Thomas, A.
    Lalive, P. H.
    Turck, N.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 879 - 880
  • [24] A biomarker discovery of acute myocardial infarction using feature selection and machine learning
    Aizatul Shafiqah Mohd Faizal
    Wei Yin Hon
    T. Malathi Thevarajah
    Sook Mei Khor
    Siow-Wee Chang
    Medical & Biological Engineering & Computing, 2023, 61 : 2527 - 2541
  • [25] Feature Selection Methods for Protein Biomarker Discovery from Proteomics or Multiomics Data
    Shi, Zhiao
    Wen, Bo
    Gao, Qiang
    Zhang, Bing
    MOLECULAR & CELLULAR PROTEOMICS, 2021, 20
  • [26] A biomarker discovery of acute myocardial infarction using feature selection and machine learning
    Faizal, Aizatul Shafiqah Mohd
    Hon, Wei Yin
    Thevarajah, T. Malathi
    Khor, Sook Mei
    Chang, Siow-Wee
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (10) : 2527 - 2541
  • [27] Ensemble Feature Selection for Biomarker Discovery in Mass Spectrometry-based Metabolomics
    ShahrjooiHaghighi, AliAsghar
    Frigui, Hichem
    Zhang, Xiang
    Wei, Xiaoli
    Shi, Biyun
    McClain, Craig J.
    SAC '19: PROCEEDINGS OF THE 34TH ACM/SIGAPP SYMPOSIUM ON APPLIED COMPUTING, 2019, : 19 - 24
  • [28] Class Discovery via Bimodal Feature Selection in Unsupervised Settings
    Curtis, Jessica
    Kon, Mark
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 699 - 702
  • [29] Sparse Portfolio Selection via Bayesian Multiple Testing
    Das, Sourish
    Sen, Rituparna
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2021, 83 (SUPPL 2): : 585 - 617
  • [30] Sparse Portfolio Selection via Bayesian Multiple Testing
    Sourish Das
    Rituparna Sen
    Sankhya B, 2021, 83 : 585 - 617