FIXED-PARAMETER TRACTABILITY OF MULTICUT PARAMETERIZED BY THE SIZE OF THE CUTSET

被引:55
|
作者
Marx, Daniel [1 ]
Razgon, Igor [2 ]
机构
[1] Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Budapest, Hungary
[2] Univ London, Dept Comp Sci & Informat Syst, Birkbeck, London, England
基金
欧洲研究理事会;
关键词
parameterized complexity; graph separation problems; multicut; ALGORITHMS; GRAPH; COMPLEXITY; HARDNESS;
D O I
10.1137/110855247
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given an undirected graph G, a collection {(s(1), t(1)),..., (s(k), t(k))} of pairs of vertices, and an integer p, the EDGE MULTICUT problem asks if there is a set S of at most p edges such that the removal of S disconnects every s(i) from the corresponding t(i). VERTEX MULTICUT is the analogous problem where S is a set of at most p vertices. Our main result is that both problems can be solved in time 2(O)(p(3))center dot n(O(1)), i.e., fixed-parameter tractable parameterized by the size p of the cutset in the solution. By contrast, it is unlikely that an algorithm with running time of the form f(p)center dot n(O(1)) exists for the directed version of the problem, as we show it to be W[1]-hard parameterized by the size of the cutset.
引用
收藏
页码:355 / 388
页数:34
相关论文
共 50 条
  • [21] Fixed-Parameter Tractability of Maximum Colored Path and Beyond
    Fomin, Fedor, V
    Golovach, Petr A.
    Korhonen, Tuukka
    Simonov, Kirill
    Stamoulis, Giannos
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3700 - 3712
  • [22] Constant ratio fixed-parameter approximation of the edge multicut problem
    Marx, Daniel
    Razgon, Igor
    INFORMATION PROCESSING LETTERS, 2009, 109 (20) : 1161 - 1166
  • [23] Fixed-Parameter Tractability of (n - k) List Coloring
    Banik, Aritra
    Jacob, Ashwin
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (07) : 1307 - 1316
  • [24] On the Fixed-Parameter Tractability of the Maximum Connectivity Improvement Problem
    Federico Corò
    Gianlorenzo D’Angelo
    Vahan Mkrtchyan
    Theory of Computing Systems, 2020, 64 : 1094 - 1109
  • [25] Fixed-Parameter Tractability of Token Jumping on Planar Graphs
    Ito, Takehiro
    Kaminski, Marcin
    Ono, Hirotaka
    ALGORITHMS AND COMPUTATION, ISAAC 2014, 2014, 8889 : 208 - 219
  • [26] Fixed-parameter tractability of anonymizing data by suppressing entries
    Chaytor, Rhonda
    Evans, Patricia A.
    Wareham, Todd
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2008, 5165 : 23 - +
  • [27] On the Fixed-Parameter Tractability of the Maximum Connectivity Improvement Problem
    Coro, Federico
    D'Angelo, Gianlorenzo
    Mkrtchyan, Vahan
    THEORY OF COMPUTING SYSTEMS, 2020, 64 (06) : 1094 - 1109
  • [28] Fixed-Parameter Tractability of Maximum Colored Path and Beyond
    V. Fomin, Fedor
    Golovach, Petr a.
    Korhonen, Tuukka
    Simonov, Kirill
    Plattner, Hasso
    Stamoulis, Giannos
    ACM TRANSACTIONS ON ALGORITHMS, 2024, 20 (04)
  • [29] Fixed-Parameter Tractability of Satisfying Beyond the Number of Variables
    Robert Crowston
    Gregory Gutin
    Mark Jones
    Venkatesh Raman
    Saket Saurabh
    Anders Yeo
    Algorithmica, 2014, 68 : 739 - 757
  • [30] Fixed-Parameter Tractability of (n − k) List Coloring
    Aritra Banik
    Ashwin Jacob
    Vijay Kumar Paliwal
    Venkatesh Raman
    Theory of Computing Systems, 2020, 64 : 1307 - 1316