On the Fixed-Parameter Tractability of the Maximum Connectivity Improvement Problem

被引:0
|
作者
Coro, Federico [1 ]
D'Angelo, Gianlorenzo [2 ]
Mkrtchyan, Vahan [2 ]
机构
[1] Sapienza Univ Rome, Rome, Italy
[2] Gran Sasso Sci Inst, Laquila, Italy
关键词
Graph augmentation; Connectivity; Parameterized complexity; ALGORITHMS; DIAMETER;
D O I
10.1007/s00224-020-09977-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G = (V,E) and an integer B and we are asked to find B new edges to be added to G in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]-hard for parameter B and it is FPT for parameters |V |- B and nu, the matching number of G. We further characterize the MCI problem with respect to other complementary parameters.
引用
收藏
页码:1094 / 1109
页数:16
相关论文
共 50 条
  • [1] On the Fixed-Parameter Tractability of the Maximum Connectivity Improvement Problem
    Federico Corò
    Gianlorenzo D’Angelo
    Vahan Mkrtchyan
    Theory of Computing Systems, 2020, 64 : 1094 - 1109
  • [2] Fixed-parameter tractability of the Maximum Agreement Supertree problem
    Guillemot, Sylvain
    Berry, Vincent
    COMBINATORIAL PATTERN MATCHING, PROCEEDINGS, 2007, 4580 : 274 - +
  • [3] Fixed-Parameter Tractability of the Maximum Agreement Supertree Problem
    Guillemot, Sylvain
    Berry, Vincent
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2010, 7 (02) : 342 - 353
  • [4] Fixed-parameter tractability for the Tree Assembly problem
    Shi, Feng
    You, Jie
    Zhang, Zhen
    Liu, Jingyi
    Wang, Jianxin
    THEORETICAL COMPUTER SCIENCE, 2021, 886 : 3 - 12
  • [5] Fixed-parameter tractability
    Samer, Marko
    Szeider, Stefan
    Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) : 425 - 454
  • [6] Fixed-Parameter Tractability of Maximum Colored Path and Beyond
    Fomin, Fedor, V
    Golovach, Petr A.
    Korhonen, Tuukka
    Simonov, Kirill
    Stamoulis, Giannos
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3700 - 3712
  • [7] Fixed-Parameter Tractability of Maximum Colored Path and Beyond
    V. Fomin, Fedor
    Golovach, Petr a.
    Korhonen, Tuukka
    Simonov, Kirill
    Plattner, Hasso
    Stamoulis, Giannos
    ACM TRANSACTIONS ON ALGORITHMS, 2024, 20 (04)
  • [8] Scheduling and fixed-parameter tractability
    Mnich, Matthias
    Wiese, Andreas
    MATHEMATICAL PROGRAMMING, 2015, 154 (1-2) : 533 - 562
  • [9] Scheduling and fixed-parameter tractability
    Matthias Mnich
    Andreas Wiese
    Mathematical Programming, 2015, 154 : 533 - 562
  • [10] The maximum 2-edge-colorable subgraph problem and its fixed-parameter tractability
    Mkrtchyan V.
    Journal of Graph Algorithms and Applications, 2024, 28 (01) : 129 - 147