Microplates for Crystal Growth and in situ Data Collection at a Synchrotron Beamline

被引:6
|
作者
Liang, Miao [1 ,2 ]
Wang, Zhijun [1 ,3 ]
Wu, Hai [1 ,2 ]
Yu, Li [1 ,2 ]
Sun, Bo [1 ,3 ]
Zhou, Huan [1 ,3 ]
Yu, Feng [1 ,3 ]
Wang, Qisheng [1 ,3 ]
He, Jianhua [1 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[4] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
来源
CRYSTALS | 2020年 / 10卷 / 09期
关键词
microcrystals; microplate; grid scanning; in situ data collection; X-RAY-DIFFRACTION; PROTEIN CRYSTALLIZATION; CRYSTALLOGRAPHY; CHIP; SOFTWARE; PLATFORM; DROPLET;
D O I
10.3390/cryst10090798
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
An efficient data collection method is important for microcrystals, because microcrystals are sensitive to radiation damage. Moreover, microcrystals are difficult to harvest and locate owing to refraction effects from the surface of the liquid drop or optically invisible, owing to their small size. Collecting X-ray diffraction data directly from the crystallization devices to completely eliminate the crystal harvesting step is of particular interest. To address these needs, novel microplates combining crystal growth and data collection have been designed for efficient in situ data collection and fully tested at Shanghai Synchrotron Radiation Facility (SSRF) crystallography beamlines. The design of the novel microplates fully adapts the advantage of in situ technology. Thin Kapton membranes were selected to seal the microplate for crystal growth, the crystallization plates can support hanging drop and setting drop vapor diffusion crystallization experiments. Then, the microplate was fixed on a magnetic base and mounted on the goniometer head for in situ data collection. Automatic grid scanning was applied for crystal location with a Blu-Ice data collection system and then in situ data collection was performed. The microcrystals of lysozyme were selected as the testing samples for diffraction data collection using the novel microplates. The results show that this method can achieve comparable data quality to that of the traditional method using the nylon loop. In addition, our method can efficiently and diversely perform data acquisition experiments, and be especially suitable for solving structures of multiple crystals at room temperature or cryogenic temperature.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] In situ synchrotron measurements of oxide growth strains
    Almer, JD
    Swift, GA
    Nychka, JA
    Üstündag, E
    Clarke, DR
    [J]. RESIDUAL STRESSES VII, PROCEEDINGS, 2005, 490-491 : 287 - 293
  • [22] Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system
    [J]. Pothineni, Sudhir Babu, 1992, International Union of Crystallography, 5 Abbey Road, Chester, CH1 2HU, United Kingdom (47):
  • [23] Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system
    Pothineni, Sudhir Babu
    Venugopalan, Nagarajan
    Ogata, Craig M.
    Hilgart, Mark C.
    Stepanov, Sergey
    Sanishvili, Ruslan
    Becker, Michael
    Winter, Graeme
    Sauter, Nicholas K.
    Smith, Janet L.
    Fischetti, Robert F.
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2014, 47 : 1992 - 1999
  • [24] Crystal growth of hydroxyapatite microplates synthesised by Sol-Gel method
    Mendez-Lozano, Nestor
    Apatiga-Castro, Lui M.
    Rivera-Munoz, Eric M.
    Manzano-Ramirez, Alejandro
    Gonzalez-Gutierrez, Carlos A.
    Zamora-Antunano, Marco A.
    [J]. MICRO & NANO LETTERS, 2019, 14 (14) : 1414 - 1417
  • [25] Advances in synchrotron data collection protocols for experimental phasing
    Finke, Aaron D.
    Weinert, Tobias
    Panepucci, Ezequiel
    Fensburg, Claus
    Vonrhein, Clemens
    Bricogne, Gerard
    Olieric, Vincent
    Wang, Meitian
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S22 - S22
  • [26] New Opportunities in Synchrotron Data Collection with the Pilatus Detectors
    Broennimann, Christian
    Kobas, Miroslav
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C112 - C113
  • [27] Double Laue-crystal monochromator for an X-ray imaging beamline with synchrotron radiation
    Hu Wen
    Xie Hong-Lan
    Du Guo-Hao
    Xiao Ti-Qiao
    [J]. HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2007, 31 (06): : 597 - 601
  • [28] The Crystal Structures of two Anhydrous Magnesium Hydroxychloride Phases from in situ Synchrotron Powder Diffraction Data
    Dinnebier, Robert E.
    Halasz, Ivan
    Freyer, Daniela
    Hanson, Jonathan C.
    [J]. ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2011, 637 (11): : 1458 - 1462
  • [29] Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline
    Madden, Jeremy T.
    Toth, Scott J.
    Dettmar, Christopher M.
    Newman, Justin A.
    Oglesbee, Robert A.
    Hedderich, Hartmut G.
    Everly, R. Michael
    Becker, Michael
    Ronau, Judith A.
    Buchanan, Susan K.
    Cherezov, Vadim
    Morrow, Marie E.
    Xu, Shenglan
    Ferguson, Dale
    Makarov, Oleg
    Das, Chittaranjan
    Fischetti, Robert
    Simpson, Garth J.
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2013, 20 : 531 - 540
  • [30] Multi-crystal data collection using synchrotron radiation as exemplified with low-symmetry crystals of Dps
    Kovalenko, Vladislav
    Popov, Alexander
    Santoni, Gianluca
    Loiko, Natalia
    Tereshkina, Ksenia
    Tereshkin, Eduard
    Krupyanskii, Yurii
    [J]. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2020, 76 : 568 - 576