Double scaling limits, Airy functions and multicritical behaviour in O(N) vector sigma models

被引:0
|
作者
Maeder, J
Ruhl, W
机构
[1] Department of Physics, University of Kaiserslautern, 67653 Kaiserslautern
关键词
D O I
10.1016/0920-5632(96)00338-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
O(N) vector sigma models possessing catastrophes in their action are studied. Coupling the limit N --> infinity with an appropriate scaling behaviour of the coupling constants, the partition function develops a singular factor. This is a generalised Airy function in the case of spacetime dimension zero and the partition function of a scalar field theory for positive spacetime dimension. Susceptibility matrices and beta functions are calculated.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 50 条
  • [31] Cutoff effects in O(N) nonlinear sigma models
    Knechtli, F
    Leder, B
    Wolff, U
    NUCLEAR PHYSICS B, 2005, 726 (03) : 421 - 440
  • [32] Resurgence and dynamics of O(N) and Grassmannian sigma models
    Gerald V. Dunne
    Mithat Ünsal
    Journal of High Energy Physics, 2015
  • [33] Qubit regularized O(N) nonlinear sigma models
    Singh, Hersh
    PHYSICAL REVIEW D, 2022, 105 (11)
  • [34] Resurgence and dynamics of O(N) and Grassmannian sigma models
    Dunne, Gerald V. .
    Uensal, Mithat
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (09):
  • [35] Continuum limits and exact finite-size-scaling functions for one-dimensionalO(N)-invariant spin models
    Attilio Cucchieri
    Tereza Mendes
    Andrea Pelissetto
    Alan D. Sokal
    Journal of Statistical Physics, 1997, 86 : 581 - 673
  • [36] The minimal conformal O(N) vector sigma model at d=3
    Leonhardt, T
    Rühl, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04): : 1403 - 1413
  • [37] LARGE N-LIMIT OF O(N) VECTOR MODELS
    SCHELSTRAETE, S
    VERSCHELDE, H
    PHYSICS LETTERS B, 1994, 332 (1-2) : 36 - 43
  • [38] Virial expansion and TBA in O (N) sigma-models
    Balog, J
    Hegedus, A
    PHYSICS LETTERS B, 2001, 523 (1-2) : 211 - 220
  • [39] An analytical study of the O(N) nonlinear sigma models on lattice
    Zhao, PY
    Wu, JM
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 245 - 248
  • [40] SCALING PROPERTIES OF CONDENSATES IN THE 1/N EXPANSION OF LATTICE NONLINEAR SIGMA-MODELS
    CAMPOSTRINI, M
    ROSSI, P
    PHYSICS LETTERS B, 1990, 242 (01) : 81 - 88