Double scaling limits, Airy functions and multicritical behaviour in O(N) vector sigma models

被引:0
|
作者
Maeder, J
Ruhl, W
机构
[1] Department of Physics, University of Kaiserslautern, 67653 Kaiserslautern
关键词
D O I
10.1016/0920-5632(96)00338-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
O(N) vector sigma models possessing catastrophes in their action are studied. Coupling the limit N --> infinity with an appropriate scaling behaviour of the coupling constants, the partition function develops a singular factor. This is a generalised Airy function in the case of spacetime dimension zero and the partition function of a scalar field theory for positive spacetime dimension. Susceptibility matrices and beta functions are calculated.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 50 条
  • [21] BOREL SUMMABILITY OF THE 1/N EXPANSION FOR THE N-VECTOR [O(N) NON-LINEAR-SIGMA] MODELS
    FROHLICH, J
    MARDIN, A
    RIVASSEAU, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (01) : 87 - 110
  • [22] Corrections to finite-size scaling in two-dimensional O(N) sigma-models
    Caracciolo, S
    Pelissetto, A
    NUCLEAR PHYSICS B, 1997, : 693 - 695
  • [23] Scaling contributions to the free energy in the 1/n expansion of O(n) nonlinear sigma models in d-dimensions
    Dilaver, M
    Rossi, P
    Gunduc, Y
    PHYSICS LETTERS B, 1998, 420 (3-4) : 314 - 318
  • [24] Structure functions of the 2d O(n) non-linear sigma models
    Balog, J
    Weisz, P
    NUCLEAR PHYSICS B, 2005, 709 (1-2) : 329 - 380
  • [25] Bootstrapping the O(N) vector models
    Kos, Filip
    Poland, David
    Simmons-Duffin, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [26] Bootstrapping the O(N ) vector models
    Filip Kos
    David Poland
    David Simmons-Duffin
    Journal of High Energy Physics, 2014
  • [27] Matrix models, Argyres-Douglas singularities and double scaling limits
    Bertoldi, G
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (06):
  • [28] SCALING SOLUTION FOR COSMOLOGICAL SIGMA-MODELS AT LARGE-N
    TUROK, N
    SPERGEL, DN
    PHYSICAL REVIEW LETTERS, 1991, 66 (24) : 3093 - 3096
  • [29] FUNCTION SIGMA(X)=SIGMA(LIMITS N=O TO INFINITY)(-1)N/(2N+1-X)
    HANTSCHE, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (01): : 56 - 58
  • [30] Multiple scaling limits of U(N)2 x O(D) multi-matrix models
    Benedetti, Dario
    Carrozza, Sylvain
    Toriumi, Reiko
    Valette, Guillaume
    ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (02): : 367 - 433