Aqueous Mixtures of Room-Temperature Ionic Liquids: Entropy-Driven Accumulation of Water Molecules at Interfaces

被引:34
|
作者
Kobayashi, Takeshi [1 ]
Kemna, Andre [2 ]
Fyta, Maria [1 ]
Braunschweig, Bjoern [2 ]
Smiatek, Jens [1 ,3 ]
机构
[1] Univ Stuttgart, Inst Computat Phys, D-70569 Stuttgart, Germany
[2] Univ Munster, Inst Phys Chem, D-48149 Munster, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster Ion Energy Storage HIMS IE, D-48149 Munster, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 22期
基金
欧洲研究理事会;
关键词
SUM-FREQUENCY GENERATION; PARTICLE MESH EWALD; VIBRATIONAL SPECTROSCOPY; FORCE-FIELD; NANOSTRUCTURAL ORGANIZATION; LIQUID/WATER MIXTURES; DYNAMICS SIMULATION; HOFMEISTER SERIES; RESIDUAL WATER; IMIDAZOLIUM;
D O I
10.1021/acs.jpcc.9b04098
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work investigates the influence of uncharged interfaces on the distribution of water molecules in three aqueous dialkylimidazolium-based ionic liquid mixtures at various water concentrations. The results are based on atomistic molecular dynamics (MD) simulations supported by sum-frequency generation (SFG) experiments. All outcomes highlight an entropically driven accumulation of water molecules in front of interfaces with slight, but technologically relevant differences. Our findings reveal that the local water density depends crucially on the water mole fraction, local ordering effects, and the molecular structure of the ionic liquids (ILs). We unravel the influence of hydrophobicity/hydrophilicity and bulkiness of the ions, as well as the effect of water in defining the role of the ILs as a main solvent, a cosolvent or cosolute. The outcome of this study allows the definition of reliable criteria for beneficial water-IL combinations in view of distinct applications.
引用
收藏
页码:13795 / 13803
页数:9
相关论文
共 50 条
  • [21] Ammonia solubilities in room-temperature ionic liquids
    Yokozeki, A.
    Shiflett, Mark B.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (05) : 1605 - 1610
  • [22] Freon electrochemistry in room-temperature ionic liquids
    Doherty, Andrew P.
    Koshechko, Vjacheslav
    Titov, Vladimir
    Mishura, Andrey
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2007, 602 (01) : 91 - 95
  • [23] Chemistry of aerosolized room-temperature ionic liquids
    Chambreau, Steven
    Vaghjiani, Ghanshyam
    Popolan-Vaida, Denisia
    Leone, Stephen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [24] Electrochemical reactivity in room-temperature ionic liquids
    Hapiot, Philippe
    Lagrost, Corinne
    CHEMICAL REVIEWS, 2008, 108 (07) : 2238 - 2264
  • [25] Quinones Electrochemistry in Room-Temperature Ionic Liquids
    Nikitina, Viktoriya A.
    Nazmutdinov, Renat R.
    Tsirlina, Galina A.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (04): : 668 - 677
  • [26] Synthesis and catalysis in room-temperature ionic liquids
    Smith, PJ
    Sethi, A
    Welton, T
    MOLTEN SALTS: FROM FUNDAMENTALS TO APPLICATIONS, 2002, 52 : 345 - 355
  • [27] Surface chemistry of room-temperature ionic liquids
    Aliaga, Cesar
    Santos, Cherry S.
    Baldelli, Steven
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (28) : 3683 - 3700
  • [28] Gas solubilities in room-temperature ionic liquids
    Camper, D
    Scovazzo, P
    Koval, C
    Noble, R
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (12) : 3049 - 3054
  • [29] Binary mixtures of homologous room-temperature ionic liquids: Temperature and composition evolution of the nanoscale structure
    Pontoni, Diego
    DiMichiel, Marco
    Deutsch, Moshe
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 338
  • [30] Room temperature ionic liquids and their mixtures - a review
    Marsh, KN
    Boxall, JA
    Lichtenthaler, R
    FLUID PHASE EQUILIBRIA, 2004, 219 (01) : 93 - 98