In this paper, the Legendre-Petrov-Galerkin method for the Korteweg de Vries equation with nonperiodic boundary conditions is analyzed. The nonlinear term is computed with the Legendre spectral method and some pseudospectral methods, respectively. Optimal error estimates in L-2-norm are obtained for both semidiscrete and fully discrete schemes. The method is also applicable to some (2m + 1)th-order differential equations.
机构:
Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, FranceUniv Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
Courtes, Clementine
Lagoutiere, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, FranceUniv Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
Lagoutiere, Frederic
Rousset, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, FranceUniv Paris Saclay, Lab Math Orsay, Univ Paris Sud, CNRS, F-91405 Orsay, France
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USAUniv Tennessee, Dept Math, Knoxville, TN 37996 USA