A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION

被引:0
|
作者
Karakashian, Ohannes [1 ]
Makridakis, Charalambos [2 ,3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Crete, Dept Appl Math, Iraklion, Greece
[3] FORTH, IACM, Iraklion 70013, Greece
基金
美国国家科学基金会;
关键词
NONLINEAR EVOLUTION-EQUATIONS; FINITE-ELEMENT-METHOD; DEVRIES EQUATION; PARABOLIC PROBLEMS; ELLIPTIC RECONSTRUCTION; NUMERICAL ASPECTS; MODEL EQUATIONS; HIGH-ORDER; APPROXIMATIONS; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct, analyze and numerically validate a posteriori error estimates for conservative discontinuous Galerkin (DG) schemes for the Generalized Korteweg-de Vries (GKdV) equation. We develop the concept of dispersive reconstruction, i.e., a piecewise polynomial function which satisfies the GKdV equation in the strong sense but with a computable forcing term enabling the use of a priori error estimation techniques to obtain computable upper bounds for the error. Both semidiscrete and fully discrete approximations are treated.
引用
收藏
页码:1145 / 1167
页数:23
相关论文
共 50 条