Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation

被引:30
|
作者
Hufford, Casey [1 ]
Xing, Yulong [1 ,2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Korteweg-de Vries equation; Superconvergence; Error estimates; FINITE-ELEMENT-METHOD; ONE-DIMENSIONAL SYSTEMS; CONSERVATION-LAWS; UNSTRUCTURED GRIDS; VOLUME METHOD; FORMULATION;
D O I
10.1016/j.cam.2013.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the superconvergence property of the local discontinuous Galerkin (LOG) method for solving the linearized Korteweg-de Vries (KdV) equation. We prove that, if the piecewise P-k polynomials with k >= 1 are used, the LDG solution converges to a particular projection of the exact solution with the order k + 3/2, when the upwind flux is used for the convection term and the alternating flux is used for the dispersive term. Numerical examples are provided at the end to support the theoretical results. Published by Elsevier B.V.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 50 条
  • [1] A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect
    Liu, HL
    Yan, J
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 215 (01) : 197 - 218
  • [2] A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg-de Vries Equation
    Samii, Ali
    Panda, Nishant
    Michoski, Craig
    Dawson, Clint
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) : 191 - 212
  • [3] A Hamiltonian preserving discontinuous Galerkin method for the generalized Korteweg-de Vries equation
    Liu, Hailiang
    Yi, Nianyu
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 321 : 776 - 796
  • [4] ASYMPTOTICALLY EXACT LOCAL DISCONTINUOUS GALERKIN ERROR ESTIMATES FOR THE LINEARIZED KORTEWEG-DE VRIES EQUATION IN ONE SPACE DIMENSION
    Baccouch, Mahboub
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2015, 12 (01) : 162 - 195
  • [5] Central Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
    Jiao, Mengjiao
    Cheng, Yingda
    Liu, Yong
    Zhang, Mengping
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 28 (03) : 927 - 966
  • [6] Local absorbing boundary conditions for a linearized Korteweg-de Vries equation
    Zhang, Wei
    Li, Hongwei
    Wu, Xiaonan
    [J]. PHYSICAL REVIEW E, 2014, 89 (05):
  • [7] CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    Bona, J. L.
    Chen, H.
    Karakashian, O.
    Xing, Y.
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1401 - 1432
  • [8] A Posteriori Error Estimates for Conservative Local Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
    Karakashian, Ohannes
    Xing, Yulong
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) : 250 - 278
  • [9] The secular solutions of the linearized Korteweg-de Vries equation
    Leblond, H
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) : 3772 - 3782
  • [10] A Hybridized Discontinuous Galerkin Method for the Nonlinear Korteweg–de Vries Equation
    Ali Samii
    Nishant Panda
    Craig Michoski
    Clint Dawson
    [J]. Journal of Scientific Computing, 2016, 68 : 191 - 212