Superconvergence of the local discontinuous Galerkin method for the linearized Korteweg-de Vries equation

被引:30
|
作者
Hufford, Casey [1 ]
Xing, Yulong [1 ,2 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Korteweg-de Vries equation; Superconvergence; Error estimates; FINITE-ELEMENT-METHOD; ONE-DIMENSIONAL SYSTEMS; CONSERVATION-LAWS; UNSTRUCTURED GRIDS; VOLUME METHOD; FORMULATION;
D O I
10.1016/j.cam.2013.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the superconvergence property of the local discontinuous Galerkin (LOG) method for solving the linearized Korteweg-de Vries (KdV) equation. We prove that, if the piecewise P-k polynomials with k >= 1 are used, the LDG solution converges to a particular projection of the exact solution with the order k + 3/2, when the upwind flux is used for the convection term and the alternating flux is used for the dispersive term. Numerical examples are provided at the end to support the theoretical results. Published by Elsevier B.V.
引用
收藏
页码:441 / 455
页数:15
相关论文
共 50 条
  • [31] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    [J]. NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [32] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [33] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [34] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [35] THE KORTEWEG-DE VRIES EQUATION AND BEYOND
    FOKAS, AS
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) : 295 - 305
  • [36] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    [J]. PHYSICAL REVIEW D, 2012, 86 (12)
  • [37] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [38] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [39] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [40] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882