The secular solutions of the linearized Korteweg-de Vries equation

被引:4
|
作者
Leblond, H [1 ]
机构
[1] Univ Angers, CNRS, EP 130, Lab POMA, F-49045 Angers 01, France
关键词
D O I
10.1063/1.532467
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the inhomogeneous linearized Korteweg-de Vries (KdV) equation. It is solved by the inverse scattering transform method. The secular-producing terms on the right-hand side (rhs) are characterized in several ways: first we give a mathematical characterization as resonant terms. Second, the secular-producing terms are interpreted as conserved densities of the KdV equation. Third, it is checked that the removal of all linear terms from the rhs, polynomial in the solution of KdV, ensures the boundness of the solution of the linearized equation. Fourth, considering this solution itself as the rhs, we determine which part of it is secular producing, and which part is not. (C) 1998 American Institute of Physics. [S0022-2488(98)03006-0].
引用
收藏
页码:3772 / 3782
页数:11
相关论文
共 50 条
  • [1] Inversion of the linearized Korteweg-de Vries equation at the multisoliton solutions
    M. Hărăguş-Courcelle
    D. H. Sattinger
    [J]. Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 436 - 469
  • [2] Quasiperiodic solutions of the Korteweg-de Vries equation
    Yu. N. Zaiko
    [J]. Technical Physics Letters, 2002, 28 : 235 - 236
  • [3] Computability of solutions of the Korteweg-de Vries equation
    Gay, W
    Zhang, BY
    Zhong, N
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (01) : 93 - 110
  • [4] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [5] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    [J]. Mathematical Notes, 2010, 88 : 741 - 747
  • [6] Primitive solutions of the Korteweg-de Vries equation
    Dyachenko, S. A.
    Nabelek, P.
    Zakharov, D. V.
    Zakharov, V. E.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 202 (03) : 334 - 343
  • [7] Complexiton solutions to the Korteweg-de Vries equation
    Ma, WX
    [J]. PHYSICS LETTERS A, 2002, 301 (1-2) : 35 - 44
  • [8] Quasiperiodic solutions of the Korteweg-de Vries equation
    Zaiko, YN
    [J]. TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 235 - 236
  • [9] Analyticity of solutions of the Korteweg-de Vries equation
    Tarama, S
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (01): : 1 - 32
  • [10] On the Singular Solutions of the Korteweg-de Vries Equation
    Pokhozhaev, S. I.
    [J]. MATHEMATICAL NOTES, 2010, 88 (5-6) : 741 - 747