Fabrication of photonic crystals in rare-earth doped chalcogenide glass films for enhanced upconversion

被引:3
|
作者
Pollard, M. E. [1 ]
Knight, K. J. [3 ]
Parker, G. J. [1 ]
Hewak, D. W. [2 ]
Charlton, M. D. B. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Nano Res Grp, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[3] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia
来源
基金
英国工程与自然科学研究理事会;
关键词
Photonic crystal; upconversion; rare earth; erbium; chalcogenide; gallium lanthanum sulfide; GLS; WAVE-GUIDE AMPLIFIERS; THIN-FILMS; OPTICAL-PROPERTIES; SPUTTERED FILMS; DEPOSITION; EMISSION;
D O I
10.1117/12.908014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gallium lanthanum oxysulfide (GLSO) is a promising host material for observing strong upconversion emission from trivalent rare-earth ions such as erbium (Er3+). Its attractive properties include high rare-earth solubility due to the lanthanum content of the glass former, a high refractive index (n = 2.2 at 550nm) for high radiative efficiency, and a low maximum phonon energy of approximately 425cm(-1). Photonic crystals meanwhile can provide controlled light extraction, and may be capable of suppressing unwanted IR emission from lower lying metastable states. Here, we describe the fabrication of photonic crystals in annealed films of Er3+-doped GLSO deposited by RF sputtering. The most intense visible upconversion emission is observed in films annealed at 550 degrees C, close to the bulk glass transition temperature. Hexagonal lattice photonic crystals are subsequently milled into the films using a focused ion beam (FIB). The milling parameters are optimized to produce the most vertical sidewall profile.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Discovery of non-reversible thermally enhanced upconversion luminescence behavior in rare-earth doped nanoparticles
    Li, Denghao
    Wang, Weirong
    Liu, Xiaofeng
    Jiang, Chun
    Qiu, Jianrong
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (15) : 4336 - 4343
  • [42] Photoluminescence in rare-earth-doped chalcogenide thin films
    Hamel, V
    Fick, J
    Villeneuve, A
    Vallée, R
    Knystautas, ÉJ
    Schiettekatte, F
    Roorda, S
    Lopez, C
    Richardson, KA
    OPTICAL AMPLIFIERS AND THEIR APPLICATIONS, PROCEEDINGS, 2001, 44 : 88 - 92
  • [43] Nano-photonic Chemical Sensor Using Rare-Earth Upconversion Phosphors
    Patel, Darayas N.
    Blockmonl, Avery
    Ochieng, Vanesa
    Sarkisov, Sergey S.
    Darwish, Abdalla M.
    Sarkisov, Avedik S.
    OPTICAL COMPONENTS AND MATERIALS XIV, 2017, 10100
  • [44] Photonic Integrated Quantum Memory in Rare-Earth Doped Solids
    Zhou, Zong-Quan
    Liu, Chao
    Li, Chuan-Feng
    Guo, Guang-Can
    Oblak, Daniel
    Lei, Mi
    Faraon, Andrei
    Mazzera, Margherita
    de Riedmatten, Hugues
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [45] The properties of amorphous arsenic chalcogenide films modified by rare-earth complexes
    Kozyukhin, SA
    Fairushin, AR
    Voronkov, ÉN
    SEMICONDUCTORS, 2005, 39 (08) : 978 - 982
  • [46] The properties of amorphous arsenic chalcogenide films modified by rare-earth complexes
    S. A. Kozyukhin
    A. R. Fairushin
    É. N. Voronkov
    Semiconductors, 2005, 39 : 978 - 982
  • [47] Amorphous Arsenic Chalcogenide Films Modified Using Rare-Earth Complexes
    S. A. Kozyukhin
    N. A. Markova
    A. R. Fairushin
    N. P. Kuz'mina
    E. N. Voronkov
    Inorganic Materials, 2004, 40 : 791 - 796
  • [48] Synthesis of rare-earth chalcogenide nanomaterials
    Stoll, Sarah
    Atif, Rida
    Asuigui, Dane
    Glaser, Priscilla
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [49] Amorphous arsenic chalcogenide films modified using rare-earth complexes
    Kozyukhin, SA
    Fairushin, AR
    Voronkov, EN
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2005, 7 (03): : 1457 - 1461
  • [50] Amorphous arsenic chalcogenide films modified using rare-earth complexes
    Kozyukhin, S. A.
    Voronkov, E. N.
    Kuz'mina, N. P.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1547 - 1550