The application of an InGaAs/GaAsN strain-compensated superlattice to InAs quantum dots

被引:10
|
作者
Zhang, Wei
Uesugi, Katsuhiro
Suemune, Ikuo
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010021, Japan
[2] CREST, JST, Sapporo, Hokkaido 0010021, Japan
关键词
D O I
10.1063/1.2197261
中图分类号
O59 [应用物理学];
学科分类号
摘要
Application of InGaAs/GaAsN strain-compensated superlattice (SCSL) to InAs quantum dots (QDs) has been studied with atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), and temperature-dependent photoluminescence (PL) measurements. The insertion of a tensile-strained GaAsN layer between InGaAs layers with high In concentrations can compensate the compressive strain in the InGaAs layers and reduce the flattening of QDs during the growth of the successive InGaAs layers. Compared with QDs capped with a single InGaAs layer of a high In concentration, QDs capped with such SCSLs can achieve almost the same redshift of emission wavelength, while the optical property is highly improved. The mechanism responsible for this is discussed based on the AFM, RHEED, and PL measurements. (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Theoretical analysis for InGaAs (P) strain-compensated multiple-quantum-well lasers
    Peng, Yuheng
    An, Haiyan
    Chen, Weiyou
    Liu, Shiyong
    Chinese Journal of Lasers B (English Edition), 1998, B7 (03): : 289 - 293
  • [42] Growth of InGaAs/GaAsP Strain-compensated Multiple Quantum Wells via MOCVD Technology
    Wang X.
    Wang H.-Z.
    Zhang B.
    Wang Q.-H.
    Fan J.
    Zou Y.-G.
    Ma X.-H.
    Faguang Xuebao/Chinese Journal of Luminescence, 2021, 42 (04): : 448 - 454
  • [43] InAs/GaNAs strain-compensated quantum dots stacked up to 50 layers for use in high-efficiency solar cell
    Oshima, Ryuji
    Takata, Ayami
    Shoji, Yasushi
    Akahane, Kouichi
    Okada, Yoshitaka
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (10): : 2757 - 2760
  • [44] Dark current characteristics of InAs/GaNAs strain-compensated quantum dot solar cells
    Morioka, Takayuki
    Okada, Yoshitaka
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 44 (02): : 390 - 393
  • [45] Artificial array of InAs quantum dots on a strain-engineered superlattice
    Kim, KM
    Park, YJ
    Son, SH
    Lee, SH
    Lee, JI
    Park, JH
    Park, SK
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 24 (1-2): : 148 - 152
  • [46] Strain-compensated InGaAs/AlGaAsP quantum well intersubband photodetectors for mid-IR wavelengths
    Bacher, K
    Liu, WK
    Wu, Y
    Stewart, T
    PHOTODETECTORS: MATERIALS AND DEVICES III, 1998, 3287 : 80 - 87
  • [47] Al(In)As-(Ga)InAs strain-compensated active regions for injectorless quantum cascade lasers
    Boehm, Gerhard
    Katz, Simeon
    Meyer, Ralf
    Amann, Markus-Christian
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 1932 - 1934
  • [48] STRAIN-COMPENSATED INGAAS/INGAASP QUANTUM-WELL LASERS LATTICE-MATCHED TO GAAS
    PARK, SH
    JEONG, WG
    CHOE, BD
    APPLIED PHYSICS LETTERS, 1995, 66 (02) : 201 - 203
  • [49] Strain-Compensated InGaAs/InAlAs Quantum Cascade Detector of 4.5 μm Operating at Room Temperature
    Kong Ning
    Liu Jun-Qi
    Li Lu
    Liu Feng-Qi
    Wang Li-Jun
    Wang Zhan-Guo
    CHINESE PHYSICS LETTERS, 2010, 27 (03)
  • [50] Molecular beam epitaxy of strain-compensated InGaAs/GaAsP quantum-well intersubband photodetectors
    Bacher, K
    Massie, S
    Seaford, M
    JOURNAL OF CRYSTAL GROWTH, 1997, 175 : 977 - 982