The application of an InGaAs/GaAsN strain-compensated superlattice to InAs quantum dots

被引:10
|
作者
Zhang, Wei
Uesugi, Katsuhiro
Suemune, Ikuo
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010021, Japan
[2] CREST, JST, Sapporo, Hokkaido 0010021, Japan
关键词
D O I
10.1063/1.2197261
中图分类号
O59 [应用物理学];
学科分类号
摘要
Application of InGaAs/GaAsN strain-compensated superlattice (SCSL) to InAs quantum dots (QDs) has been studied with atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), and temperature-dependent photoluminescence (PL) measurements. The insertion of a tensile-strained GaAsN layer between InGaAs layers with high In concentrations can compensate the compressive strain in the InGaAs layers and reduce the flattening of QDs during the growth of the successive InGaAs layers. Compared with QDs capped with a single InGaAs layer of a high In concentration, QDs capped with such SCSLs can achieve almost the same redshift of emission wavelength, while the optical property is highly improved. The mechanism responsible for this is discussed based on the AFM, RHEED, and PL measurements. (c) 2006 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Lasing properties of strain-compensated InAs/InGaAsN/GaAsN heterostructures in 1.3-1.55 μm spectral range
    Mamutin, VV
    Bondarenko, OV
    Egorov, AY
    Kryzhanovskaya, NV
    Shernyakov, YM
    Ustinov, VM
    TECHNICAL PHYSICS LETTERS, 2006, 32 (03) : 229 - 231
  • [32] High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers
    Liu, FQ
    Zhang, YZ
    Zhang, QS
    Ding, D
    Xu, B
    Wang, ZG
    Jiang, DS
    Sun, BQ
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (12) : L44 - L46
  • [33] MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
    Gutowski, P.
    Sankowska, I.
    Karbownik, P.
    Pierscinska, D.
    Serebrennikova, O.
    Morawiec, M.
    Pruszynska-Karbownik, E.
    Golaszewska-Malec, K.
    Pierscinski, K.
    Muszalski, J.
    Bugajski, M.
    JOURNAL OF CRYSTAL GROWTH, 2017, 466 : 22 - 29
  • [34] Band structures and characteristics of InGaAs/InGaAsP strain-compensated quantum well lasers
    C.S. Ma
    L.J. Wang
    S.Y. Liu
    Optical and Quantum Electronics, 2001, 33 : 209 - 223
  • [35] Improved luminescence from CdSe quantum dots with a strain-compensated shell
    Lu, Y.
    Zhang, Y. Q.
    Cao, X. A.
    APPLIED PHYSICS LETTERS, 2013, 102 (02)
  • [36] Bandgaps and band offsets in strain-compensated InGaAs/InGaAsP multiple quantum wells
    Ma, CS
    Jin, Z
    Tian, FS
    Yang, NG
    Yang, SR
    Liu, SY
    SEMICONDUCTOR LASERS III, 1998, 3547 : 308 - 314
  • [37] Band structures and characteristics of InGaAs/InGaAsP strain-compensated quantum well lasers
    Ma, CS
    Wang, LJ
    Liu, SY
    OPTICAL AND QUANTUM ELECTRONICS, 2001, 33 (02) : 209 - 223
  • [38] Fabrication of 100 Layer-Stacked InAs/GaNAs Strain-Compensated Quantum Dots on GaAs (001) for Application to Intermediate Band Solar Cell
    Takata, Ayami
    Oshima, Ryuji
    Shoji, Yasushi
    Akahane, Kouichi
    Okada, Yoshitaka
    35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, 2010,
  • [39] Growth and characterization of strain-compensated InAsP/GaInP and InGaAs/GaInP multiple quantum wells
    Tu, CW
    Mei, XB
    Yan, CH
    Bi, WG
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1995, 35 (1-3): : 166 - 170
  • [40] Radiative and non-radiative relaxation of excitons in strain-compensated quantum dots
    Kujiraoka, M.
    Ishi-Hayase, J.
    Akahane, K.
    Yamamotoa, Y.
    Ema, K.
    Sasaki, M.
    JOURNAL OF LUMINESCENCE, 2008, 128 (5-6) : 972 - 974